(本小题满分12分)点为椭圆内的一定点,过P点引一直线,与椭圆相交于两点,且P恰好为弦AB的中点,如图所示,求弦AB所在的直线方程及弦AB的长度。

(本小题满分12分)点为椭圆内的一定点,过P点引一直线,与椭圆相交于两点,且P恰好为弦AB的中点,如图所示,求弦AB所在的直线方程及弦AB的长度。

题型:不详难度:来源:
(本小题满分12分)点为椭圆内的一定点,过P点引一直线,与椭圆相交于两点,且P恰好为弦AB的中点,如图所示,求弦AB所在的直线方程及弦AB的长度。
答案

解析

试题分析:由于A,B两点是直线与椭圆的交点,故他们应满足椭圆方程,设出它们的坐标,然后根据它们的中点为M,可将坐标间的关系转化为求直线l的斜率,然后再由点斜式求出直线方程.利用两点距离公式得到弦的长度的求解。
解:设直线与椭圆交于,则…①且…②
②-①得,即
∴所求直线方程为:,即
将其代入椭圆方程整理得,,根据弦长公式有

点评:解决该试题的关键是求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件,用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线,故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.
举一反三
F1、F2分别是双曲线的左、右焦点,A是其右顶点,过F2作x轴的垂线与双曲线的一个交点为P,G是的重心,若,则双曲线的离心率是(  )
A.2B.C.3D.

题型:不详难度:| 查看答案
(本题满分12分)已知椭圆C:=1(a>b>0)的离心率为,以原点为圆点,椭圆的短半轴为半径的圆与直线x-y+=0相切。
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交随圆C于另一点E,证明直线AE与x轴相交于定点Q.
题型:不详难度:| 查看答案
已知椭圆(),M,N是椭圆上关于原点对称的两点,P是椭圆上任意一点,且直线PM,PN的斜率分别为=,则椭圆的离心率为(   )
A.B.C.D.

题型:不详难度:| 查看答案
(本题满分12分) 已知均在椭圆上,直线分别过椭圆的左、右焦点时,有
(1)求椭圆的方程
(2)设是椭圆上的任一点,为圆的任一条直径,求的最大值
题型:不详难度:| 查看答案
设P是双曲线与圆在第一象限的交点,分别是双曲线的左右焦点,且则双曲线的离心率为(    )
A.B.C.D.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.