(本题满分14分)设直线. 若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R都有. 则称直线l为曲线S的“上夹线”.(

(本题满分14分)设直线. 若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R都有. 则称直线l为曲线S的“上夹线”.(

题型:不详难度:来源:
(本题满分14分)设直线. 若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意xR都有. 则称直线l为曲线S的“上夹线”.(Ⅰ)已知函数.求证:为曲线的“上夹线”.
(Ⅱ)观察下图:
          
根据上图,试推测曲线的“上夹线”的方程,并给出证明.
答案

解析
(Ⅰ)由, -------1分
分当时,,此时, -------2分
,所以是直线与曲线的一个切点;-------3分
时,,此时,------4分
,所以是直线与曲线的一个切点;  -----5分
所以直线l与曲线S相切且至少有两个切点;
对任意xR,所以  --------6分
因此直线是曲线的“上夹线”.        ----------7分
(Ⅱ)推测:的“上夹线”的方程为       ------9分
①先检验直线与曲线相切,且至少有两个切点:
设: 
,得:kZ)-----10分
时,
故:过曲线上的点()的切线方程为:
y[]= [-()],化简得:
即直线与曲线相切且有无数个切点.----12分
不妨设,②下面检验g(x)F(x)g(x)F(x)=
直线是曲线的“上夹线”.--------14分
举一反三
已知双曲线的顶点都是椭圆的顶点,直线经过椭圆的一个焦点.⑴求椭圆的方程;⑵抛物线经过椭圆的两个焦点,与直线相交于,试将线段的长表示为的函数.
题型:不详难度:| 查看答案
(本小题12分)已知椭圆C的焦点在x轴上,它的一个顶点恰好是抛物线的焦点,离心率。(1)求椭圆的标准方程;(2)过椭圆C的右焦点作直线交椭圆C于A、B两点,交y轴于M,若为定值吗?证明你的结论。
题型:不详难度:| 查看答案
(本小题满分12分)已知的三边长成等差数列,若点的坐标分别为.(1)求顶点的轨迹的方程;(2)若线段的延长线交轨迹于点,当时求线段的垂直平分线轴交点的横坐标的取值范围.


题型:不详难度:| 查看答案
(本题满分13分)已知椭圆,直线与椭圆交于两点,是线段的中点,连接并延长交椭圆于点设直线与直线的斜率分别为,且,求椭圆的离心率.若直线经过椭圆的右焦点,且四边形是平行四边形,求直线斜率的取值范围.


题型:不详难度:| 查看答案
(本题满分15分)
已知曲线C上的动点满足到点的距离比到直线的距离小1.
求曲线C的方程;过点F的直线l与曲线C交于A、B两点.(ⅰ)过A、B两点分别作抛物线的切线,设其交点为M,证明;(ⅱ)是否在y轴上存在定点Q,使得无论AB怎样运动,都有?证明你的结论.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.