椭圆C:x29+y24=1,斜率为k的直线l与椭圆相交于点M,N,点A是线段MN的中点,直线OA(O为坐标原点)的斜率是k′,那么kk′=______.

椭圆C:x29+y24=1,斜率为k的直线l与椭圆相交于点M,N,点A是线段MN的中点,直线OA(O为坐标原点)的斜率是k′,那么kk′=______.

题型:不详难度:来源:
椭圆C:
x2
9
+
y2
4
=1
,斜率为k的直线l与椭圆相交于点M,N,点A是线段MN的中点,直线OA(O为坐标原点)的斜率是k′,那么kk′=______.
答案
设M(x1,y1),N(x2,y2),
k=
y1-y2
x1-x2
k=
y1+y2
x1+x2

因为M,N在椭圆上,所以
x12
9
+
y12
4
=1

x22
9
+
y22
4
=1

①-②得,
(x1+x2)(x1-x2)
9
=-
(y1+y2)(y1-y2)
4

y1-y2
x1-x2
y1+y2
x1+x2
=-
4
9

kk=-
4
9

故答案为-
4
9
举一反三
椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的长轴长是短轴长的两倍,且过点A(2,1).
(1)求椭圆C的标准方程;
(2)若直线l:x-1-y=0与椭圆C交于不同的两点M,N,求|MN|的值.
题型:不详难度:| 查看答案
己知斜率为1的直线l与双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
相交于B、D两点,且BD的中点为M(1,3).
(Ⅰ)求C的离心率;
(Ⅱ)设C的右顶点为A,右焦点为F,|DF|•|BF|=17,证明:过A、B、D三点的圆与x轴相切.
题型:不详难度:| 查看答案
若AB为抛物线y2=2px(p>0)的动弦,且|AB|=a(a>2p),则AB的中点M到y轴的最近距离是(  )
A.
a
2
B.
p
2
C.
a+p
2
D.
a-p
2
题型:不详难度:| 查看答案
长度为a的线段AB的两个端点A、B都在抛物线y2=2px(p>0,a>2p)上滑动,则线段AB的中点M到y轴的最短距离为______.
题型:不详难度:| 查看答案
如图,椭圆Q:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点F(c,0),过点F的一动直线m绕点F转动,并且交椭圆于A、B两点,P是线段AB的中点.
(1)求点P的轨迹H的方程.
(2)在Q的方程中,令a2=1+cosq+sinq,b2=sinq(0<q≤
π
2
),确定q的值,使原点距椭圆的右准线l最远,此时,设l与x轴交点为D,当直线m绕点F转动到什么位置时,三角形ABD的面积最大?
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.