已知椭圆M:x2a2+y2b2=1(a>b>0)的一个顶点A的坐标是(0,-1),且右焦点Q到直线x-y+22=0的距离为3.(1)求椭圆方程;(2)试问是否存

已知椭圆M:x2a2+y2b2=1(a>b>0)的一个顶点A的坐标是(0,-1),且右焦点Q到直线x-y+22=0的距离为3.(1)求椭圆方程;(2)试问是否存

题型:不详难度:来源:
已知椭圆M:
x2
a2
+
y2
b2
=1(a>b>0)的一个顶点A的坐标是(0,-1),且右焦点Q到直线x-y+2


2
=0的距离为3.
(1)求椭圆方程;
(2)试问是否存在斜率为k(k≠0)的直线l,使l与椭圆M有两个不同的交点B、C,且|AB|=|AC|?若存在,求出k的范围,若不存在,说明理由.
答案
(1)∵椭圆M:
x2
a2
+
y2
b2
=1(a>b>0)的一个顶点A的坐标是(0,-1),
∴b=1,
∵右焦点Q到直线x-y+2


2
=0的距离为3.
设Q(c,0)(c>0),∴
|c+2


2
|


2
=3,解得c=


2

∴a2=b2+c2=3,
∴椭圆M的方程:
x2
3
+y2=1.
(2)设l:y=kx+m(k≠0),
代入椭圆M的方程得:(1+3k2)x2+6kmx+3(m2-1)=0,
由△>0得:(6km)2-12(1+3k2)(m2-1)>0,
∴3k2>m2-1…①
设B(x1,y1)、C(x2,y2),
则BC中点P(
x1+x2
2
y1+y2
2
),且
x1+x2
2
=-
3km
1+3k2

y1+y2
2
=k×
x1+x2
2
+m=
m
1+3k2

∴P(-
3km
1+3k2
m
1+3k2
),
∵|AB|=|AC|,∴AP⊥BC,即kAP•kBC=-1,
m
1+3k2
+1
-3mk
1+3k2
-0
=-
1
k
,∴m=
1
2
(1+3k2)…②,
由①②得:(1+3k2)(1-k2)>0,∴-1<k<1且k≠0,
∴存在满足条件的直线l,其斜率k∈(-1,0)∪(0,1).
举一反三
线段PQ是椭圆
x2
4
+
y2
3
=1
过M(1,0)的一动弦,且直线PQ与直线x=4交于点S,则
|SM|
|SP|
+
|SM|
|SQ|
=______.
题型:不详难度:| 查看答案
在平面直角坐标系xOy中,已知双曲线C1:2x2-y2=1.
(1)过C1的左顶点引C1的一条渐近线的平行线,求该直线与另一条渐近线及x轴围成的三角形的面积;
(2)设斜率为1的直线l交C1于P、Q两点,若l与圆x2+y2=1相切,求证:OP⊥OQ;
(3)设椭圆C2:4x2+y2=1,若M、N分别是C1、C2上的动点,且OM⊥ON,求证:O到直线MN的距离是定值.
题型:不详难度:| 查看答案
设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点(0,4),离心率为
3
5

(1)求C的方程;
(2)求过点(3,0)且斜率为
4
5
的直线被C所截线段的长度.
题型:不详难度:| 查看答案
在平面直角坐标系xoy中,如图,已知椭圆
x2
9
+
y2
5
=1
的左、右顶点为A、B,右焦点为F,设过点T(t,m)的直线TA、TB与此椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0
(1)设动点P满足(


PF
+


PB
)(


PF
-


PB
)=13
,求点P的轨迹方程;
(2)设x1=2,x2=
1
3
,求点T的坐标;
(3)若点T在点P的轨迹上运动,问直线MN是否经过x轴上的一定点,若是,求出定点的坐标;若不是,说明理由.
题型:不详难度:| 查看答案
已知抛物线C:y2=2px(p>0)上横坐标为1的点M到抛物线C焦点F的距离|MF|=2.
(1)试求抛物线C的标准方程;
(2)若直线l与抛物线C相交所得的弦的中点为(2,1),试求直线l的方程.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.