在平面直角坐标系xOy中,设点P(x,y),M(x,-4)以线段PM为直径的圆经过原点O.(1)求动点P的轨迹W的方程;(2)过点E(0,-4)的直线l与轨迹W

在平面直角坐标系xOy中,设点P(x,y),M(x,-4)以线段PM为直径的圆经过原点O.(1)求动点P的轨迹W的方程;(2)过点E(0,-4)的直线l与轨迹W

题型:海淀区二模难度:来源:
在平面直角坐标系xOy中,设点P(x,y),M(x,-4)以线段PM为直径的圆经过原点O.
(1)求动点P的轨迹W的方程;
(2)过点E(0,-4)的直线l与轨迹W交于两点A,B,点A关于y轴的对称点为A,试判断直线AB是否恒过一定点,并证明你的结论.
答案
(1)由题意可得OP⊥OM,所以


OP


OM
=0
,即(x,y)•(x,-4)=0
即x2-4y=0,即动点P的轨迹w的方程为x2=4y
(2)设直线l的方程为y=kx-4,A(x1,y1),B(x2,y2),则A′(-x1,y1).





y=kx-4
x2=4y
消y整理得x2-4kx+16=0
则x1+x2=4k,x1x2=16
直线A /B:y-y2=
y2-y1
x2+x1
(x-x2)

y =
y2-y1
x2+x1
(x-x2)+y2

y =
x2-x1
4
x+
x1x2
4

y =
x2-x1
4
x+4
,所以,直线A′B恒过定点(0,4).
举一反三
已知两定点F1(-


2
,  0),F2(


2
,  0)
,满足条件|


PF2
|-|


PF1
| =2
的点P的轨迹是曲线C,直线y=kx-2与曲线C交于A、B两点,且|AB| =
2


5
3

(1)求曲线C的方程;
(2)求直线AB的方程;
(3)若曲线C上存在一点D,使


OA
+


OB
=m


OD
,求m的值及点D到直线AB的距离.
题型:不详难度:| 查看答案
与两点(-3,0),(3,0)距离的平方和等于38的点的轨迹方程是(  )
A.x2-y2=10B.x2+y2=10C.x2+y2=38D.x2-y2=38
题型:不详难度:| 查看答案
设定点F1(-5,0)、F2(5,0),动点P(x,y)满足条件,|PF1|+|PF2|=10.则动点P的轨迹是(  )
A.椭圆B.线段C.不存在D.以上都不对
题型:不详难度:| 查看答案
已知动点C(x,y)到点A(-1,0)的距离是它到点B(1,0)的距离的


2
倍.
(Ⅰ) 试求点C的轨迹方程;
(Ⅱ) 试用你探究到的结果求△ABC面积的最大值.
题型:不详难度:| 查看答案
已知双曲线过点A(-2,4)、B(4,4),它的一个焦点是F1(1,0),求它的另一个焦点F2的轨迹方程.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.