下表是某市从3月份中随机抽取的天空气质量指数()和“”(直径小于等于微米的颗粒物)小时平均浓度的数据,空气质量指数()小于表示空气质量优良.日期编号空气质量指数

下表是某市从3月份中随机抽取的天空气质量指数()和“”(直径小于等于微米的颗粒物)小时平均浓度的数据,空气质量指数()小于表示空气质量优良.日期编号空气质量指数

题型:不详难度:来源:
下表是某市从3月份中随机抽取的天空气质量指数()和“”(直径小于等于微米的颗粒物)小时平均浓度的数据,空气质量指数()小于表示空气质量优良.
日期编号










空气质量指数(










小时平均浓度(










 
(1)根据上表数据,估计该市当月某日空气质量优良的概率;
(2)在上表数据中,在表示空气质量优良的日期中,随机抽取两个对其当天的数据作进一步的分析,设事件为“抽取的两个日期中,当天‘’的小时平均浓度不超过”,求事件发生的概率;
(3)在上表数据中,在表示空气质量优良的日期中,随机抽取天,记为“小时平均浓度不超过的天数,求的分布列和数学期望.
答案
(1);(2);(3)详见解析.
解析

试题分析:(1)首先根据表格中的数据找出空气质量优良的天数,然后利用古典概型的概率计算公式即可求出当月某日空气质量优良的概率;(2)先确定(1)中所选的天中 的小时平均浓度不超过对应的天数,利用排列组合思想与古典概型计算相应事件的概率;(3)先确定随机变量的可能取值,然后利用超几何分布的特点求出随机变量在对应取值下的概率,列出分布列计算其数学期望即可.
(1)由上表数据知,天中空气质量指数()小于的日期有:
天,
故可估计该市当月某日空气质量优良的概率
(2)由(1)知天中表示空气质量为优良的天数为,当天“ 的小时平均浓度不超过有编号为,共天,
故事件发生的概率
(3)由(1)知,的可能取值为

的分布列为:








 
的数学期望.
举一反三
在某次测量中得到的样本数据如下:82、84、84、86、86、86、88、88、88、88.若样本数据恰好是样本数据每一个数都加2后所得数据,则两个样本的下列数字特征对应相同的是(    )
A.众数B.平均数C.中位数D.方差

题型:不详难度:| 查看答案
为调查民营企业的经营状况,某统计机构用分层抽样的方法从A、B、C三个城市中,抽取若干个民营企业组成样本进行深入研究,有关数据见下表:(单位:个)
城市
民营企业数量
抽取数量
A

4
B
28

C
84
6
 
(1)求的值;
(2)若从城市A与B抽取的民营企业中再随机选2个进行跟踪式调研,求这2个都来自城市A的概率.
题型:不详难度:| 查看答案
为了了解高一年级学生的身高情况,某校按10%的比例对全校800名高一年级学生按性别进行抽样检查,得到如下频数分布表:
表1:男生身高频数分布表
身高(cm)
[160,165)
[165,170)
[170,175)
[175,180)
[180,185)
[185,190]
频数
2
5
14
13
4
2
 
表2:男生身高频数分布表
身高(cm)
[150,155)
[150,160)
[160,165)
[165,170)
[170,175)
[175,180]
频数
2
12
16
6
3
1
 
(1)分别估计高一年级男生和女生的平均身高;
(2)在样本中,从身高180cm以上的男生中任选2人,求至少有一人身高在185cm以上的概率.
题型:不详难度:| 查看答案
通过随机调查110名性别不同的学生是否爱好某项运动,得到如下的列联表:
A.有99%以上的把握认为“爱好该项运动与性别有关”
B.有99%以上的把握认为“爱好该项运动与性别无关”
C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”

题型:不详难度:| 查看答案
某种产品的广告费支出z与销售额y(单位:万元)之间有如下对应数据:

若广告费支出z与销售额y回归直线方程为多一6.5z+n(n∈R).
(1)试预测当广告费支出为12万元时,销售额是多少?
(2)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.