某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“

某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“

题型:不详难度:来源:
某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
组 数
分 组
低碳族的人数
占本组的频率
第一组
[25,30)
120
0.6
第二组
[30,35)
195
p
第三组
[35,40)
100
0.5
第四组
[40,45)
a
0.4
第五组
[45,50)
30
0.3
第六组
[50,55]
15
0.3
 

(1)补全频率分布直方图并求n,a,p的值.
(2)为调查该地区的年龄与生活习惯和是否符合低碳观念有无关系,调查组按40岁以下为青年,40岁以上(含40岁)为老年分成两组,请你先完成下面2×2列联表,并回答是否有99%的把握认为该地区的生活习惯是否符合低碳观念与人的年龄有关.
参考公式:χ2=
P(χ2≥x0)
0.050
0.010
0.001
x0
3.841
6.635
10.828
 
年龄组
是否低碳族
青 年
老 年
总 计
低碳族
 
 
 
非低碳族
 
 
 
总计
 
 
 
 
答案
(1) 1000    60   0.65如图

(2) 表格
     年龄组
是否低碳族
青 年
老 年
总 计
低碳族
415
105
520
非低碳族
285
195
480
总 计
700
300
1 000
99.9%的把握认为该地区的生活习惯是否符合低碳观念与人的年龄有关.
解析
(1)第一组的人数为=200,
频率为0.04×5=0.2,
所以n==1000.
由题可知,第二组的频率为0.3,
所以第二组的人数为1000×0.3=300,
所以p==0.65.
第四组的频率为0.03×5=0.15,
所以第四组的人数为1000×0.15=150,
所以a=150×0.4=60.

(2)由已知数据可完成表格
     年龄组
是否低碳族
青 年
老 年
总 计
低碳族
415
105
520
非低碳族
285
195
480
总 计
700
300
1 000
假设H0:该地区的生活习惯是否符合低碳观念与人的年龄无关.
代入公式χ2=
≈49.622>10.828
所以有99.9%的把握认为该地区的生活习惯是否符合低碳观念与人的年龄有关.
举一反三
关于统计数据的分析,有以下几个结论,其中正确的个数为( )
①利用残差进行回归分析时,若残差点比较均匀地落在宽度较窄的水平带状区域内,则说明线性回归模型的拟合精度较高;
②将一组数据中的每个数据都减去同一个数后,期望与方差均没有变化;
③调查剧院中观众观后感时,从50排(每排人数相同)中任意抽取一排的人进行调查是分层抽样法;
④已知随机变量X服从正态分布N(3,1),且P(2≤X≤4)=0.682 6,则P(X>4)等于0.158 7
⑤某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人.为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为15人。
A.2B.3C.4 D.5

题型:不详难度:| 查看答案
今年年初,我国多个地区发生了持续性大规模的雾霾天气,给我们的身体健康产生了巨大的威胁。私家车的尾气排放也是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力。为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:
年龄(岁)
[15,25)
[25,35)
[35,45)
[45,55)
[55,65)
[65,75]
频数
5
10
15
10
5
5
赞成人数
4
6
9
6
3
4
(1)完成被调查人员的频率分布直方图;
(2)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行进行追踪调查,记选中的4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列和数学期望.

题型:不详难度:| 查看答案
在某高校自主招生考试中,所有选报II类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为五个等级. 某考场考生的两科考试成绩数据统计如下图所示,其中“数学与逻辑”科目的成绩为的考生有人.

(1)求该考场考生中“阅读与表达”科目中成绩为的人数;
(2)若等级分别对应分,分,分,分,分,求该考场考生“数学与逻辑”科目的平均分;
(3)已知参加本考场测试的考生中,恰有两人的两科成绩均为. 在至少一科成绩为的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为的概率.
题型:不详难度:| 查看答案
甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的次预赛成绩记录如下: 
甲                    乙               
(1)用茎叶图表示这两组数据;
(2)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;
(3)①求甲、乙两人的成绩的平均数与方差,②若现要从中选派一人参加数学竞赛,
根据你的计算结果,你认为选派哪位学生参加合适?
题型:不详难度:| 查看答案
甲乙两个班级均为40人,进行一门考试后,按学生考试成绩及格与不及格进行统计,甲班及格人数为36人,乙班及格人数为24人. 根据以上数据建立一个的列联表如下:
 
不及格
及格
总计
甲班
a
b
 
乙班
c
d
 
总计
 
 
 
参考公式:
P(K2>k)
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
  k
0.455
0.708
1.323
2.072
2.706
3.84
5.024
6.635
7.879
10.83
根据以上信息,在答题卡上填写以上表格,通过计算对照参考数据,有_____的把握认为“成绩与班级有关系” .
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.