甲乙两个班级均为40人,进行一门考试后,按学生考试成绩及格与不及格进行统计,甲班及格人数为36人,乙班及格人数为24人. 根据以上数据建立一个的列联表如下: 不
题型:不详难度:来源:
甲乙两个班级均为40人,进行一门考试后,按学生考试成绩及格与不及格进行统计,甲班及格人数为36人,乙班及格人数为24人. 根据以上数据建立一个的列联表如下: 参考公式:;
P(K2>k)
| 0.50
| 0.40
| 0.25
| 0.15
| 0.10
| 0.05
| 0.025
| 0.010
| 0.005
| 0.001
| k
| 0.455
| 0.708
| 1.323
| 2.072
| 2.706
| 3.84
| 5.024
| 6.635
| 7.879
| 10.83
| 根据以上信息,在答题卡上填写以上表格,通过计算对照参考数据,有_____的把握认为“成绩与班级有关系” . |
答案
99.5% |
解析
试题分析:根据所给的数据,可得2×2的列联表,代入求观测值的公式,做出观测值,把所得的数值同观测值表中的数据进行比较,得到有1-0.005=99.5%的把握认为“成绩与班级有关系”. |
举一反三
某观赏鱼池塘中养殖大量的红鲫鱼与金鱼,为了估计池中两种鱼数量情况,养殖人员从池中捕出红鲫鱼和金鱼各1000条,并给每条鱼作上不影响其存活的记号,然后放回池内,经过一段时间后,再从池中随机捕出1000条鱼,分别记录下其中有记号的鱼数目,再放回池中,这样的记录作了10次,将记录数据制成如图所示的茎叶图.
(1)根据茎叶图分别计算有记号的两种鱼的平均数,并估计池塘中两种鱼的数量. (2)随机从池塘中逐条有放回地捕出3条鱼,求恰好是1条金鱼2条红鲫鱼的概率. |
某食品厂对生产的某种食品按行业标准分成五个不同等级,等级系数X依次为A,B,C,D,E.现从该种食品中随机抽取20件样品进行检验,对其等级系数进行统计分析,得到频率分布表如下:
(1)在所抽取的20件样品中,等级系数为D的恰有3件,等级系数为E的恰有2件,求a,b,c的值; (2)在(1)的条件下,将等级系数为D的3件样品记为x1,x2,x3,等级系数为E的2件样品记为y1,y2,现从x1,x2,x3,y1,y2这5件样品中一次性任取两件(假定每件样品被取出的可能性相同),试写出所有可能的结果,并求取出的两件样品是同一等级的概率. |
某单位N名员工参加“社区低碳你我他”活动,他们的年龄在25岁至50岁之间。按年龄分组:第1组,第2组,第3组,第4组,第5组,由统计的数据得到的频率分布直方图如图所示,下表是年龄的频率分布表。
(1)求正整数a,b,N的值; (2)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组中抽取的人数分别是多少? (3)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1 人在第3组的概率。 |
大家知道,莫言是中国首位获得诺贝尔文学奖的文学家,国人欢欣鼓舞。某高校文学社从男女生中各抽取50名同学调查对莫言作品的了程度,结果如下:
(1)试估计该学校学生阅读莫言作品超过50篇的概率。 (2)对莫言作品阅读超过75篇的则称为“对莫言作品非常了解”,否则为“一般了解”,根据题意完成下表,并判断能否有的把握认为对莫言作品的非常了解与性别有关?
|
为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人调查,就是否“取消英语听力”的问题,调查统计的结果如下表:
| 应该取消
| 应该保留
| 无所谓
| 在校学生
| 2100人
| 120人
| y人
| 社会人士
| 600人
| x人
| z人
| 已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.05. (1)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人? (2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望. |
最新试题
热门考点