某数学老师对本校2013届高三学生的高考数学成绩按1:200进行分层抽样抽取了20名学生的成绩,并用茎叶图记录分数如图所示,但部分数据不小心丢失,同时得到如下

某数学老师对本校2013届高三学生的高考数学成绩按1:200进行分层抽样抽取了20名学生的成绩,并用茎叶图记录分数如图所示,但部分数据不小心丢失,同时得到如下

题型:不详难度:来源:
某数学老师对本校2013届高三学生的高考数学成绩按1:200进行分层抽样抽取了20名学生的成绩,并用茎叶图记录分数如图所示,但部分数据不小心丢失,同时得到如下所示的频率分布表:
分数段(分)
[50,70)
[70,90)
[90,110)
[110,130)
[130,150)
总计
频数
 
 
 
b
 
 
频率
a
0.25
 
 
 
 

(1)求表中a,b的值及分数在[90,100)范围内的学生人数,并估计这次考试全校学生数学成绩的及格率(分数在[90,150)内为及格):
(2)从成绩在[100,130)范围内的学生中随机选4人,
设其中成绩在[100,110)内的人数为X,求X的分布列及数学期望.
答案
(1)a=0.1,b=3;4;65%.
(2)分布列为
X
1
2
3
4
P




E(X)=2.2
解析

试题分析:(1)由[50,70)范围的频数,计算出该范围内的频率a,首先计算出[70,90)范围内的频数,然后得出[80,90),即可求出[90,100)范围内的学生人数,计算出[90,100)范围内的学生人数,然后除以20就是及格率.(2)写出随机变量X的所有可能取值,然后计算出相应的概率,列表即可的分布列,最后根据期望值公式计算期望值即可.
试题解析:(1)由茎叶图可知分数在[50,70)范围内的有2人,在[110,130) 范围内的有3人,
∴a= b=3;分数在[70,90)内的人数20×0.25=5,结合茎叶图可得分数在[70,80)内的人数为2,所以分数在[90,100)范围内的学生人数为4,故数学成绩及格的学生为13人,所以估计这次考试全校学生数学成绩的及格率为 ×100%=65%.
(2)由茎叶图可知分数在[100,130)范围内的有7人,分数在[100,110)范围内的有4人,则随机变量X的所有可能取值为1,2,3,4.相应的概率为:P(X=1)== ;P(X=2)== ;P(X=3)==;P(X=4)==.
随机变量X的分布列为
X
1
2
3
4
P




E(X)=1×+2×+3×+4×=2.2
举一反三
某种机器的使用年限和所支出的维修费用(万元)有下表的统计资料:

2
3
4
5
6

2.2
3.8
5.5
6.5
7.0
根据上表可得回归方程,据此模型估计,该种机器使用年限为10年时
维修费用约         万元(结果保留两位小数).
题型:不详难度:| 查看答案
某校女子篮球队7名运动员身高(单位:厘米)分布的茎叶图如图,已知记录的平均身高为175cm,但有一名运动员的身高记录不清楚,其末位数记为,那么的值为(    )
A.1B.2 C.3D.4

题型:不详难度:| 查看答案
已知随机变量的值如下表所示,如果线性相关且回归直线方程为,则实数(   )
A.B.C.D.

题型:不详难度:| 查看答案
为了解今年某校高三毕业班准备报考飞行员学生体重情况,将所得的数据整理后,画出了频率分布直方图(如图).已知图中从左到右的前3个小组的频率之比为,其中第二小组的频数为12.

(1)求该校报考飞行员的总人数;
(2)以这所学校的样本来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设表示体重超过60公斤的学生人数,求的分布列和数学期望.
题型:不详难度:| 查看答案
已知数据是上海普通职工个人的年收入,设个数据的中位数为,平均数为,方差为,如果再加上世界首富的年收入,则这个数据中,下列说法正确的是 (      ) 
A.年收入平均数大大增加,中位数一定变大,方差可能不变
B.年收入平均数大大增加,中位数可能不变,方差变大
C.年收入平均数大大增加,中位数可能不变,方差也不变
D.年收入平均数可能不变,中位数可能不变,方差可能不变

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.