一批产品共100件,其中有10件是次品,为了检验其质量,从中以随机的方式选取5件,求在抽取的这5件产品中次品数分布列与期望值,并说明5件中有3件以上(包括3件)
题型:不详难度:来源:
一批产品共100件,其中有10件是次品,为了检验其质量,从中以随机的方式选取5件,求在抽取的这5件产品中次品数分布列与期望值,并说明5件中有3件以上(包括3件)为次品的概率.(精确到0.001) |
答案
0.07 |
解析
抽取的次品数是一个随机变量,设为,显然可以取从0到5的6个整数. 抽样中,如果恰巧有个()次品,则其概率为
按照这个公式计算,并要求精确到0.001,则有
故的分布列为
| 0
| 1
| 2
| 3
| 4
| 5
| P
| 0.583
| 0.340
| 0.070
| 0.007
| 0
| 0
|
由分布列可知,
这就是说,所抽取的5件品中3件以上为次品的可能性很小,只有7%. |
举一反三
某超市为了响应环保要求,鼓励顾客自带购物袋到超市购物,采取了如下措施:对不使用超市塑料购物袋的顾客,超市给予0.96折优惠;对需要超市塑料购物袋的顾客,既要付购买费,也不享受折扣优惠.假设该超市在某个时段内购物的人数为36人,其中有12位顾客自己带了购物袋,现从这36人中随机抽取2人. (Ⅰ)求这2人都享受折扣优惠或都不享受折扣优惠的概率; (Ⅱ)设这2人中享受折扣优惠的人数为,求的分布列和数学期望. |
某地政府召集5家企业的负责人开会,其中甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为 |
某人随机地将编号为1,2,3,4的四个小球放入编号为1,2,3,4的四个盒子中,每个盒子放一个小球,全部放完。 (I)求编号为奇数的小球放入到编号为奇数的盒子中的概率值; (II)当一个小球放到其中一个盒子时, 若球的编号与盒子的编号相同 ,称这球是“放对”的,否则称这球是“放错”的。设“放对”的球的个数为的分布列及数学期望。 |
(本小题满分12分) 某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到过疫区。B肯定是受A感染的。对于C,因为难以断定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是。同样也假定D受A、B和C感染的概率都是。在这种假定之下,B、C、D中直接受A感染的人数X就是一个随机变量。写出X的分布列(不要求写出计算过程),并求X的均值(即数学期望)。 |
森林公园有甲、乙两个相邻景点,原拟定甲景点内有2个A班的同学和2个B班的同学;乙景点内有2个A班同学和3个B班同学,后由于某种原因甲乙两景点各有一个同学交换景点观光. (1)求甲景点恰有2个A班同学的概率; (2)求甲景点A班同学数ξ的分布列及期望. |
最新试题
热门考点