4张卡片上分别写有数字0,1,2,3,从这4张卡片中一次随机抽取不同的2张,则取出的两张卡片上的数字之差的绝对值等于2的概率为 .
题型:不详难度:来源:
4张卡片上分别写有数字0,1,2,3,从这4张卡片中一次随机抽取不同的2张,则取出的两张卡片上的数字之差的绝对值等于2的概率为 . |
答案
解析
试题分析:本题是一个等可能事件的概率,试验发生包含的事件是从5张中随机的抽2张,共有C42种结果,满足条件的事件是取出的卡片上的数之差的绝对值等于2的有两种,得到概率。解:由题意知本题是一个等可能事件的概率,试验发生包含的事件是从4张中随机的抽2张,共有C42=6种结果,满足条件的事件是取出的卡片上的数之差的绝对值等于2,有2种结果,∴要求的概率是,故答案为 点评:本题考查等可能事件的概率,是一个基础题,本题解题的关键是事件数是一个组合数,若都按照排列数来理解也可以做出正确的结果 |
举一反三
国庆期间,甲去某地的概率为,乙和丙二人去此地的概率为、,假定他们三人的行动相互不受影响,这段时间至少有1人去此地旅游的概率为 ( ) |
一工厂生产的100个产品中有90个一等品,10个二等品,现从这批产品中抽取4个,则其中恰好有一个二等品的概率为( ) |
如下图,用A、B、C三类不同的元件连接两个系统N1,N2,当元件A、B、C都正常工作时系统N1正常工作,当元件A正常工作且元件B、C至少有一个正常工作时系统N2正常工作,已知元件A、B、C正常工作的概率分别为0.80,0.90,0.90,分别求系统N1,N2正常工作的概率p1,p2. |
把红,黄,蓝,白4张纸牌随机地分发给甲,乙,丙,丁四个人,每人一张,则事件"甲分得红牌"与事件"丁分得红牌"是( )A.不可能事件 | B.互斥但不对立事件 | C.对立事件 | D.以上答案都不对 |
|
某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽验一只是正品(甲级)的概率为( ) |
最新试题
热门考点