某射击测试规则为:每人最多射击3次,击中目标即终止射击,第i次击中目标得1~i(i=1,2,3)分,3次均未击中目标得0分,已知某射手每次击中目标的概率为0.8
题型:陕西省高考真题难度:来源:
某射击测试规则为:每人最多射击3次,击中目标即终止射击,第i次击中目标得1~i(i=1,2,3)分,3次均未击中目标得0分,已知某射手每次击中目标的概率为0.8,其各次射击结果互不影响。 (1)求该射手恰好射击两次的概率; (2)该射手的得分记为ξ,求随机变量ξ的分布列及数学期望。 |
答案
解:(1)设该射手第次击中目标的事件为,则
。 (2)ξ可能取的值为0,1,2,3 ξ的分布列为
Eξ=。 |
举一反三
设进入某商场的每一位顾客购买甲商品的概率为0.5,购买乙商品的概率为0.6,且顾客购买甲商品与购买乙商品相互独立,各顾客之间购买商品是相互独立的, (Ⅰ)求进入该商场的1位顾客购买甲、乙两种商品中的一种的概率; (Ⅱ)求进入该商场的3位顾客中,至少有2位顾客既未购买甲种也未购买乙种商品的概率。 |
在某次普通话测试中,为测试汉字发音水平,设置了10张卡片,每张卡片上印有一个汉字的拼音,其中恰有3张卡片上的拼音带有后鼻音“g”。 (1)现对三位被测试者先后进行测试。第一位被测试者从这10张卡片中随机抽取一张,测试后放回,余下2位的测试,也按同样的方法进行。求这三位被测试者抽取的卡片上,拼音都带有后鼻音“g”的概率; (2)若某位被测试者从这10张卡片中一次随机抽取3张,求这3张卡片上,拼音带有后鼻音“g”的卡片不少于2张的概率。 |
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、,现在3名工人独立地从中任意一个项目参与建设要求: (1)他们选择的项目所属类别互不相同的概率; (2)至少有1人选择的项目属于民生工程的概率。 |
在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q1为0.25,在B处的命中率为q2,该同学选择先在A处投一球,以后都在B处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为 |
|
(1)求q2的值; (2)求随机变量ξ的数学期望Eξ; (3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。 |
设甲、乙、丙三台机器是否需要照顾相互之间没有影响。已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125, (Ⅰ)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少; (Ⅱ)计算这个小时内至少有一台需要照顾的概率。 |
最新试题
热门考点