北京的高考数学试卷中共有8道选择题,每个选择题都给了4个选项(其中有且仅有一个选项是正确的).评分标准规定:每题只选1项,答对得5分,不答或答错得0分.某考生每

北京的高考数学试卷中共有8道选择题,每个选择题都给了4个选项(其中有且仅有一个选项是正确的).评分标准规定:每题只选1项,答对得5分,不答或答错得0分.某考生每

题型:不详难度:来源:
北京的高考数学试卷中共有8道选择题,每个选择题都给了4个选项(其中有且仅有一个选项是正确的).评分标准规定:每题只选1项,答对得5分,不答或答错得0分.某考生每道题都给出了答案,已确定有4道题的答案是正确的,而其余的题中,有两道题每题都可判断其有两个选项是错误的,有一道题可以判断其一个选项是错误的,还有一道题因不理解题意只能乱猜.对于这8道选择题,试求:
(Ⅰ) 该考生得分为40分的概率; 
(Ⅱ) 该考生所得分数的分布列及数学期望.
答案
(1);(2).
解析
本试题主要考查了概率的求解以及分布列和期望的运用。
(Ⅰ)要得40分,8道选择题必须全做对,在其余四道题中,有两道题答对的概率为,有一道题答对的概率为,还有一道题答对的概率为,所以得40分的概率为

(Ⅱ)依题意,该考生得分的取值是20,25,30,35,40,得分为20表示只做对了四道题,其余各题都做错,故所求概率为;
同样可求得得分为25分的概率为
;
得分为30分的概率为;
得分为35分的概率为;
得分为40分的概率为.                                   
于是的分布列为

20
25
30
35
40







                                                       
=.
该考生所得分数的数学期望为.  
举一反三
某电视台有A、B两种智力闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏A,丙丁两人各自独立进行游戏B.已知甲、乙两人各自闯关成功的概率均为,丙、丁两人各自闯关成功的概率均为.
(I )求游戏A被闯关成功的人数多于游戏B被闯关成功的人数的概率;
(II) 记游戏A、B被闯关成功的总人数为,求的分布列和期望.
题型:不详难度:| 查看答案
设随机变量ξ服从分布B(n,p),且Eξ=1.6,Dξ=1.28则(    )
题型:不详难度:| 查看答案
A.n=4,p="0.4"B.n=5,p=0.32C.n=8,p=0.2D.n=7,p=0.45
若ξ~B(n,p),Eξ=6,Dξ=3,则P(ξ=1)的值为(    )
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

A.3×2-2B.2-4C.3×2-10D.2-8
已知随机变量,且,则p和n的值依次为(   )
A.,36B.,18C.,72D.,24

某次考试共有8道选择题,每道选择题有四个选项,只有一道是正确的,评分标准为:“选对得5分,不选或选错得0分。”某考生已确定有5道题的答案是正确的,其余3道题中,有一道题可以判断出两个选项是错误的,有一道题可以判断出一个选项是错误的,还有一道是乱猜的,试求该考生
(1)得40分的概率;
(2)所得分数的分布及期望.