如果在一次试验中,某事件A发生的概率为p,那么在n次独立重复试验中,事件A发生偶数次的概率为______.
题型:广州模拟难度:来源:
如果在一次试验中,某事件A发生的概率为p,那么在n次独立重复试验中,事件A发生偶数次的概率为______. |
答案
事件A发生偶数次的概率为 Cn0p0(1-p)n+Cn2p2(1-p)n-2+Cn4p4(1-p)n-4+… 又[(1-p)+p]n=Cn0p0(1-p)n+Cn1p1(1-p)n-1+Cn2p2(1-p)n-2+Cn3p3(1-p)n-3+Cn4p4(1-p)n-4+…+Cnnpn(1-p)0 ①, [(1-p)-p]n=Cn0p0(1-p)n-Cn1p1(1-p)n-1+Cn2p2(1-p)n-2-Cn3p3(1-p)n-3+Cn4p4(1-p)n-4+…+(-1)nCnnpn(1-p)0 ②, 由①+②并除以2 可得 [1+(1-2p)n]=Cn0p0(1-p)n+Cn2p2(1-p)n-2+Cn4p4(1-p)n-4+…, 故答案为:[1+(1-2p)n]. |
举一反三
某公司的“咨询热线”电话共有6条外线,经长期统计发现,每天在电话高峰期内,外线电话同时打入的概率如下表(记电话同时打入数为ξ):
ξ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | P | 0.13 | 0.35 | 0.27 | 0.14 | 0.08 | 0.02 | 0.01 | 甲、乙两支篮球队进行比赛,已知每一场甲队获胜的概率为0.6,乙队获得的概率为0.4,每场比赛均要分出胜负,比赛时采用三场两胜制,即先取得两场胜利的球队胜出. (Ⅰ)求甲队以二比一获胜的概率; (Ⅱ)求乙队获胜的概率; | 甲、乙两人各射击一次,击中目标的概率分别是和,假设两人每次射击是否击中目标相互之间没有影响. (Ⅰ)求甲射击5次,有两次未击中目标的概率; (Ⅱ)求两人各射击4次,甲恰好击中目标2次,且乙恰好击中目标3次的概率. | 某安全生产监督部门对5家小型煤矿进行安全检查(简称安检).若安检不合格,则必须进行整改.若整改后经复查仍不合格,则强行关闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果精确到0.01): (Ⅰ)恰好有两家煤矿必须整改的概率; (Ⅱ)平均有多少家煤矿必须整改; (Ⅲ)至少关闭一家煤矿的概率. | 某电视台举行电视奥运知识大奖赛,比赛分初赛和决赛两部分.为了增加节目的趣味性,初赛采用选手选一题答一题的方式进行,每位选手最多有5次选题答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰.已知选手甲答题的正确率为. (Ⅰ)求选手甲可进入决赛的概率; (Ⅱ)设选手甲在初赛中答题的个数为ξ,试写出ξ的分布列,并求ξ的数学期望. |
最新试题
热门考点
|