一种抛硬币游戏的规则是:抛掷一枚硬币,每次正面向上得1分,反面向上得2分.(1)设抛掷5次的得分为ξ,求ξ的分布列和数学期望Eξ;(2)求恰好得到n(n∈N*)

一种抛硬币游戏的规则是:抛掷一枚硬币,每次正面向上得1分,反面向上得2分.(1)设抛掷5次的得分为ξ,求ξ的分布列和数学期望Eξ;(2)求恰好得到n(n∈N*)

题型:扬州模拟难度:来源:
一种抛硬币游戏的规则是:抛掷一枚硬币,每次正面向上得1分,反面向上得2分.
(1)设抛掷5次的得分为ξ,求ξ的分布列和数学期望Eξ;
(2)求恰好得到n(n∈N*)分的概率.
答案
(1)所抛5次得分ξ的概率为P(ξ=i)=
Ci-55
(
1
2
)5
(i=5,6,7,8,9,10),
其分布列如下:
举一反三
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
ξ5678910
P
1
32
5
32
5
16
5
16
5
32
1
32
在一次电视节目的抢答中,题型为判断题,只有“对”和“错”两种结果,其中某明星判断正确的概率为p,判断错误的概率为q,若判断正确则加1分,判断错误则减1分,现记“该明星答完n题后总得分为Sn”.
(1)当p=q=
1
2
时,记ξ=|S3|,求ξ的分布列及数学期望及方差;
(2)当p=
1
3
,q=
2
3
时,求S8=2且Si≥0(i=1,2,3,4)的概率.
某射手进行射击训练,假设每次射击击中目标的概率为
3
5
,且各次射击的结果互不影响,
(1)求该射手在3次射击中,至少有2次连续击中目标的概率;
(2)求该射手在3次射中目标时,恰好射击了4次的概率;
(3)设随机变量ξ表示该射手第3次击中目标时已射击的次数,求ξ的分布列.
在三次独立重复试验中,事件A在每次试验中发生的概率相同,若事件A至少发生一次的概率为,则事件A恰好发生一次的概率为(   )
题型:浙江模拟难度:| 查看答案
A.B.C.D.
通讯中常采取重复发送信号的办法来减少在接收中可能发生的错误,假定接收一个信号时发生错误的概率是,为减少错误,采取每一个信号连发3次,接收时以“少数服从多数”的原则判断,则判错一个信号的概率为(  )
题型:不详难度:| 查看答案
A.B.//picflow.koolearn.com/upload/papers/g02/20150130/20150130173710963306.pngC.D.
有n个相同的电子元件并联在电路中,每个电子元件能正常工作的概率为0.5,要使整个线路正常工作的概率不小于0.95,n至少为(  )
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

A.3B.4C.5D.6