设为随机变量,从棱长为1的正方体ABCD-A1B1C1D1的八个顶点中任取四个点,当四点共面时,=0,当四点不共面时,的值为四点组成的四面体的体积.(1)求概率

设为随机变量,从棱长为1的正方体ABCD-A1B1C1D1的八个顶点中任取四个点,当四点共面时,=0,当四点不共面时,的值为四点组成的四面体的体积.(1)求概率

题型:不详难度:来源:
为随机变量,从棱长为1的正方体ABCD-A1B1C1D1的八个顶点中任取四个点,当四点共面时,=0,当四点不共面时,的值为四点组成的四面体的体积.
(1)求概率P(=0);
(2)求的分布列,并求其数学期望E ().
答案
(1)
(2)









解析

试题分析:(1)求概率P(= 0),就是求四点共面时概率.古典概型概率的求法,关键要找出所包含的基本事件个数,然后套用公式
(2)求的数学期望的基本步骤:首先理解的意义,写出可能取的全部值,本题考虑四个顶点不同位置,求体积;其次求取各个值的概率,写出概率分布;最后根据概率分布,由数学期望的定义求出
试题解析:(1)从正方体的八个顶点中任取四个点,共有种不同取法.
其中共面的情况共有12种(6个侧面,6个对角面).
     3分
(2)任取四个点,当四点不共面时,四面体的体积只有以下两种情况:
①四点在相对面且异面的对角线上,体积为
这样的取法共有2种.      5分
②四点中有三个点在一个侧面上,另一个点在相对侧面上,体积为
这样的取法共有种     7分
的分布列为








     8分
数学期望     10分
举一反三
多选题是标准化考试的一种题型,一般是从A、B、C、D四个选项中选出所有正确的答案.在一次考试中有5道多选题,某同学一道都不会,他随机的猜测,则他答对题数的期望值为        
题型:不详难度:| 查看答案
某市准备从7名报名者(其中男4人,女3人)中选3人到三个局任副局长.
(1)设所选3人中女副局长人数为X,求X的分布列和数学期望;
(2)若选派三个副局长依次到A、B、C三个局上任,求A局是男副局长的情况下,B局为女副局长的概率.
题型:不详难度:| 查看答案
某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A每次考试成绩合格的概率均为,科目B每次考试成绩合格的概率均为.假设各次考试成绩合格与否均互不影响.
(1)求他不需要补考就可获得证书的概率;
(2)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为,求 的分布列及数学期望E.
题型:不详难度:| 查看答案
市民李先生居住在甲地,工作在乙地,他的小孩就读的小学在丙地,三地之间的道路情况如图所示.假设工作日不走其它道路,只在图示的道路中往返,每次在路口选择道路是随机的.同一条道路去程与回程是否堵车相互独立.假设李先生早上需要先开车送小孩去丙地小学,再返回经甲地赶去乙地上班.假设道路ABD上下班时间往返出现拥堵的概率都是,道路CE上下班时间往返出现拥堵的概率都是,只要遇到拥堵上学和上班的都会迟到.

(1)求李先生的小孩按时到校的概率;
(2)李先生是否有七成把握能够按时上班?
(3)设X表示李先生下班时从单位乙到达小学丙遇到拥堵的次数,求X的均值.
题型:不详难度:| 查看答案
为贯彻“激情工作,快乐生活”的理念,某单位在工作之余举行趣味知识有奖竞赛,比赛分初赛和决赛两部分.为了增加节目的趣味性,初赛采用选手选一题答一题的方式进行,每位选手最多有5次选题答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰.已知选手甲答题的正确率为.
(1)求选手甲答题次数不超过4次可进入决赛的概率;
(2)设选手甲在初赛中答题的个数为X,试写出X的分布列,并求X的数学期望.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.