设向量a=(2,sinθ),b=(1,cosθ),θ为锐角(1)若a·b=,求sinθ+cosθ的值;(2)若a//b,求sin(2θ+)的值.

设向量a=(2,sinθ),b=(1,cosθ),θ为锐角(1)若a·b=,求sinθ+cosθ的值;(2)若a//b,求sin(2θ+)的值.

题型:不详难度:来源:
设向量a=(2,sinθ),b=(1,cosθ),θ为锐角(1)若a·b=,求sinθ+cosθ的值;(2)若a//b,求sin(2θ+)的值.
答案
(1)   (2)
解析

试题分析:(1)由已知及向量数量积的坐标运算可求得的值,从而应用平方关系就可求得(sinθ+cosθ)2的值,再注意到θ为锐角,知sinθ+cosθ>0,开方即得所求式子的值;(2)由向量平行的坐标条件:可得的值,法一:由(万能公式)得到的值,同理可得的值;再利用正弦和角公式将sin(2θ+)展开即可求得其值;法二:也可由的值,应用三角函数的定义求得的值,进而用倍角公式可求得的值,下同法一.
试题解析:(1) 因为a·b=2+sinθcosθ=,所以sinθcosθ=
所以 (sinθ+cosθ)2=1+2 sinθcosθ=
又因为θ为锐角,所以sinθ+cosθ=
(2) 解法一 因为a∥b,所以tanθ=2.
所以 sin2θ=2 sinθcosθ­=
cos2θ=cos2θ-sin2θ­==-
所以sin(2θ+)=sin2θ+cos2θ=××(-)=
解法二 因为a∥b,所以tanθ=2.所以 sinθ=,cosθ=
因此 sin2θ=2 sinθcosθ=, cos2θ=cos2θ-sin2θ­=-
所以sin(2θ+)=sin2θ+cos2θ=××(-)=. 
举一反三
在平面直角坐标系中,动点到两点的距离之和等于4.设点的轨迹为
(1)求曲线的方程;
(2)设直线交于两点,若,求的值.
题型:不详难度:| 查看答案
已知________.
题型:不详难度:| 查看答案
在△ABC中,中线长AM=2.

(1)若=-2,求证:=0;
(2)若P为中线AM上的一个动点,求·()的最小值.
题型:不详难度:| 查看答案
已知||=4,||=3,(2-3)·(2+)=61,
(1)求的夹角θ;
(2)设,求以为邻边的平行四边形的两条对角线的长度.
题型:不详难度:| 查看答案
已知,且,则的夹角大小是_____________.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.