已知四棱锥P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=AB.Q是PC上的一点,且PA∥平面QBD.

已知四棱锥P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=AB.Q是PC上的一点,且PA∥平面QBD.

题型:不详难度:来源:
已知四棱锥P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=AB.Q是PC上的一点,且PA∥平面QBD.

⑴确定Q的位置;
⑵求二面角Q-BD-C的平面角的余弦值.
答案
⑴当时,PA∥平面QBD;⑵二面角Q-BD-C的平面角的余弦值.
解析

试题分析:⑴要使得PA∥平面QBD,必须使得平面QBD内有一条直线与PA平行,为了找这条直线,先作过PA与平面QBD相交的平面,只要交线与PA平行即可.⑵由于BC,BA,BP两两垂直,故可以B为坐标原点,以BC,BA,BP分别为x,y,z轴建立空间直角坐标系,然后利用空间向量进行计算.
试题解析:⑴当时,PA∥平面QBD,证明如下:
连结AC交BD于点M,
∵2CD=AB,CD∥AB,∴AM=2MC
过PA的平面PAC平面QBD=MQ,
∵PA∥平面QBD,∴AP∥MQ,∴PQ=2QC.       4分
⑵设BC=1,如图,以B为坐标原点,以BC,BA,BP分别为x,y,z轴建立空间直角坐标系O- xyz(其中点B与点O重合),则C(1,0,0),A(0,2,0),D(1,1,0),P(0,0,1).
∵PQ=2QC,∴
设平而QBD的一个法向量为

.

又平面CBD的一个法向量为
设二面角Q-BD-C的平面角为,又为锐角

∴二面角Q-BD-C的平面角的余弦值。      12分
举一反三
已知, 则两点间距离的最小值是(    )
A.B.2C.D.1

题型:不详难度:| 查看答案
在如图所示的几何体中,四边形为平行四边形,平面.

(1)若是线段的中点,求证:平面
(2)若,求二面角的余弦值.
题型:不详难度:| 查看答案
已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点.

(1)证明:PF⊥FD;
(2)判断并说明PA上是否存在点G,使得EG∥平面PFD;
(3)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的余弦值.
题型:不详难度:| 查看答案
如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,且底面ABCD,,E是PA的中点.

(1)求证:平面平面EBD;
(2)若PA=AB=2,直线PB与平面EBD所成角的正弦值为,求四棱锥P-ABCD的体积.
题型:不详难度:| 查看答案
如图,四棱锥P—ABCD中,PD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=2,PD=,M为棱PB的中点.

(1)证明:DM平面PBC;
(2)求二面角A—DM—C的余弦值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.