空间有三组平行平面,第一组有5个,第二组有4个,第三组有3个.不同两组的平面都相交,且交线不都平行,则可构成平行六面体的个数为______.

空间有三组平行平面,第一组有5个,第二组有4个,第三组有3个.不同两组的平面都相交,且交线不都平行,则可构成平行六面体的个数为______.

题型:不详难度:来源:
空间有三组平行平面,第一组有5个,第二组有4个,第三组有3个.不同两组的平面都相交,且交线不都平行,则可构成平行六面体的个数为______.
答案
由于空间有三组平行平面,第一组有5个,第二组有4个,第三组有3个,
且不同两组的平面都相交,且交线不都平行,
从第一组的5个平面中任意选2个作为平行六面体的一组对面,有
C25
种方法,
从第二组的4个平面中任意选2个作为平行六面体的一组对面,有
C24
种方法,
从第三组的3个平面中任意选2个作为平行六面体的一组对面,有
C23
种方法,
根据分步计数原理,可构成平行六面体的个数为
C25
C24
C23
=180种方法,
故答案为 180.
举一反三
在△ABC内有任意三点不共线的2007个点,加上A,B,C三个顶点,共有2010个点,把这2010个点连线形成互不重叠的小三角形,则一共可以形成的小三角形的个数为______.
题型:不详难度:| 查看答案
通过计算可得下列等式:22-12=2×1+1,32-22=2×2+1,42-32=2×3+1,┅┅,(n+1)2-n2=2×n+1
将以上各式分别相加得:(n+1)2-12=2×(1+2+3+…+n)+n,即:1+2+3+…+n=
n(n+1)
2

类比上述求法:请你求出12+22+32+…+n2的值(要求必须有运算推理过程).
题型:不详难度:| 查看答案
由“以点(x0,y0)为圆心,r为半径的圆的方程为(x-x02+(y-y02=r2”可以类比推出球的类似属性是______.
题型:不详难度:| 查看答案
已知f(x)=
x
1-x
,设f1(x)=f(x),fn(x)=fn-1[fn-1(x)](n>1,n∈N*),则f3(x)的表达式为______,猜想fn(x)(n∈N*)的表达式为______.
题型:不详难度:| 查看答案
对于命题P:存在一个常数M,使得不等式
a
2a+b
+
b
2b+a
≤M≤
a
a+2b
+
b
b+2a
对任意正数a,b恒成立.
(1)试猜想常数M的值,并予以证明;
(2)类比命题P,某同学猜想了正确命题Q:存在一个常数M,使得不等式
a
3a+b
+
b
3b+c
+
c
3c+a
≤M≤
a
a+3b
+
b
b+3c
+
c
c+3a
对任意正数a,b,c恒成立,观察命题P与命题Q的规律,请猜想与正数a,b,c,d相关的正确命题(不需要证明).
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.