如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明: (1)CD=BC;(2)△BCD∽△GBD.

如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明: (1)CD=BC;(2)△BCD∽△GBD.

题型:不详难度:来源:
如图,DE分别为△ABCABAC的中点,直线DE交△ABC的外接圆于FG两点,若CFAB,证明:
 
(1)CDBC
(2)△BCD∽△GBD.
答案
(1)见解析(2)见解析
解析
(1)因为DE分别为ABAC的中点,所以DEBC.
又已知CFAB,故四边形BCFD是平行四边形,所以CFBDAD.
CFAD,连结AF

所以四边形ADCF是平行四边形,
CDAF.
因为CFAB,所以BCAF,故CDBC.
(2)因为FGBC,故GBCF.
由(1)可知BDCF,所以GBBD.
所以∠BGD=∠BDG.
而∠DGB=∠EFC=∠DBC,由(1)知CDBC
故△BCD∽△GBD.
举一反三
如图,AB是⊙O的直径,BE为⊙O的切线,点C为⊙O上不同于AB的一点,AD为∠BAC的平分线,且分别与BC交于H,与⊙O交于D,与BE交于E,连接BDCD.
 
(1)求证:BD平分∠CBE
(2)求证:AH·BHAE·HC.
题型:不详难度:| 查看答案
如图,已知PE切⊙O于点E,割线PBA交⊙OAB两点,∠APE的平分线和AEBE分别交于点CD.

求证:(1)CEDE;(2).
题型:不详难度:| 查看答案
如图,圆O的半径OC垂直于直径AB,弦CD交半径 OAE,过D的切线与BA的延长线交于M.
 
(1)求证:MDME
(2)设圆O的半径为1,MD,求MACE的长.
题型:不详难度:| 查看答案
如图,AB为⊙O的直径,直线CD与⊙O相切于EAD垂直CDDBC垂直CDCEF垂直ABF,连接AEBE.证明:
 
(1)∠FEB=∠CEB
(2)EF2AD·BC.
题型:不详难度:| 查看答案
如图,过圆O外一点P作该圆的两条割线PABPCD,分别交圆O于点ABCD,弦ADBC交于点Q,割线PEF经过点Q交圆O于点EF,点MEF上,且∠BAD=∠BMF.

(1)求证:PA·PBPM·PQ
(2)求证:∠BMD=∠BOD.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.