请你设计一个包装盒,如图所示,是边长为的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点P,正好形成一个正四棱柱

请你设计一个包装盒,如图所示,是边长为的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点P,正好形成一个正四棱柱

题型:不详难度:来源:
请你设计一个包装盒,如图所示,是边长为的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,上是被切去的等腰直角三角形斜边的两个端点,设
(1)若广告商要求包装盒侧面积最大,试问应取何值?
(2)若广告商要求包装盒容积最大,试问应取何值?并求出此时包装盒的高与底面边长的比值.
    
答案
(1)当时,取得最大值;(2)当时取得极大值,也是最大值,此时包装盒的高与底面边长的比值为
解析

试题分析:(1)先设包装盒的高为,底面边长为,写出的关系式,并注明的取值范围,再利用侧面积公式表示出包装盒侧面积关于的函数解析式,最后求出何时它取得最大值即可;
(2)利用体积公式表示出包装盒容积关于的函数解析式,利用导数知识求出何时它取得的最大值即可.
设包装盒的高为,底面边长为
由已知得
(1)∵        2分
∴当时,取得最大值                  3分
(2)根据题意有    5分

得,(舍)或
∴当;当          7分
∴当时取得极大值,也是最大值,此时包装盒的高与底面边长的比值为
即包装盒的高与底面边长的比值为                      10分.
举一反三
如图所示是《函数的应用》的知识结构图,如果要加入“用二分法求方程的近似解”,则应该放在(   )
A.“函数与方程”的上位B.“函数与方程”的下位
C.“函数模型及其应用”的上位D.“函数模型及其应用”的下位

题型:不详难度:| 查看答案
有一种密英文的明文(真实文)按字母分解,其中英文的a,b,c, ,z的26个字母(不分大小写),依次对应1,2,3, ,26这26个自然数,见如下表格:
a
b
c
d
e
f
g
h
i
j
k
l
m
1
2
3
4
5
6
7
8
9
10
11
12
13
n
o
p
q
r
s
t
u
v
w
x
y
z
14
15
16
17
18
19
20
21
22
23
24
25
26
 
给出如下变换公式:

将明文转换成密文,如,即变成;如,即变成.
(1)按上述规定,将明文译成的密文是什么?
(2)按上述规定,若将某明文译成的密文是,那么原来的明文是什么?
题型:不详难度:| 查看答案
若函数上单调递增,则实数的取值范围为(   )
A.B.C.D.

题型:不详难度:| 查看答案
已知函数的定义域为,若存在常数,对任意,有,则称函数.给出下列函数:
;     ②;  ③;   ④
是定义在R上的奇函数,且满足对一切实数均有.其中是函数的序号是(   )
A.①②④B.①②⑤C.①③④D.①④⑤

题型:不详难度:| 查看答案
函数f(x)=ax2+bx+c(a≠0)的图象关于直线对称。据此可推测对任意的非0实数a、b、c、m、n、g关于x的方程m[f(x)]2+n f(x)+g=0的解集不可能是(     )
A.{1,3}B.{2,4}C.{1,2,3,4}D.{1,2,4,8}

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.