若f(a)=(3m-1)a+b-2m,当m∈[0,1]时f(a)≤1恒成立,则a+b的最大值为A.B.C.D.

若f(a)=(3m-1)a+b-2m,当m∈[0,1]时f(a)≤1恒成立,则a+b的最大值为A.B.C.D.

题型:不详难度:来源:
若f(a)=(3m-1)a+b-2m,当m∈[0,1]时f(a)≤1恒成立,则a+b的最大值为
A.B.C.D.

答案
D
解析

试题分析:先根据恒成立写出有关a,b的约束条件,再在aob系中画出可行域,设z=a+b,利用z的几何意义求最值,只需求出直线a+b=z过可行域内的点A时z最大值即可.

解:设g(m)=f(a)=(3a-2)m+b-a,由于当m∈[0,1]时,g(m)=f(a)=(3a-2)m+b-a≤1恒成立,于是g(0)≤1, g(1)≤1,即b-a≤1, b+2a≤1满足此不等式组的点(a,b)构成图中的阴影部分,其中A( ,),设a+b=t,显然直线a+b=t过点A时,t取得最大值故选D.
点评:本题主要考查了恒成立问题、用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.
举一反三
的值为       
题型:不详难度:| 查看答案
已知函数满足,其中a>0,a≠1.
(1)对于函数,当x∈(-1,1)时,f(1-m)+f(1-m2)<0,求实数m的取值集合;
(2)当x∈(-∞,2)时,的值为负数,求的取值范围。
题型:不详难度:| 查看答案
若函数在R上递减,则函数的增区间是   (  )
A.(2,+∞) B.(-∞,2)C.(-2,+∞)D.(-∞,-2)

题型:不详难度:| 查看答案
定义在R上的偶函数,对任意x1,x2∈[0,+∞),(x1≠x2),有,   
则                                                                 (  )
A.B.
C.D.

题型:不详难度:| 查看答案
已知映射,其中,对应法则若对实数,在集合A中不存在原象,则k的取值范围是                               (  )
A.B.C.D.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.