已知2a=3b=k(k≠1),且2a+b=ab,则实数k的值为A.6B.9C.12D.18

已知2a=3b=k(k≠1),且2a+b=ab,则实数k的值为A.6B.9C.12D.18

题型:不详难度:来源:
已知2a=3b=k(k≠1),且2a+b=ab,则实数k的值为
A.6B.9C.12D.18

答案
D
解析

举一反三
(本小题满分12分)
已知函数f(x)=|x2-2x|.
(1)在给出的坐标系中作出y=f(x)的图象;
(2)若集合{x|f(x)=a}恰有三个元素,求实数a的值;
(3)在同一坐标系中作直线y=x,观察图象写出不等式f(x)<x的解集.
题型:不详难度:| 查看答案
(本小题满分12分)
目前,成都市B档出租车的计价标准是:路程2 km以内(含2 km)按起步价8元收取,超过2 km后的路程按1.9元/km收取,但超过10 km后的路程需加收50%的返空费(即单价为1.9×(1+50%)=2.85元/km).
(现实中要计等待时间且最终付费取整数,本题在计算时都不予考虑)
(1)将乘客搭乘一次B档出租车的费用f(x)(元)表示为行程x(0<x≤60,单位:km)的分段函数;
(2)某乘客行程为16 km,他准备先乘一辆B档出租车行驶8 km,然后再换乘另一辆B档出租车完成余下行程,请问:他这样做是否比只乘一辆B档出租车完成全部行程更省钱?
题型:不详难度:| 查看答案
(本小题满分15分)
若函数f(x)=ax3+bx2+cx+d是奇函数,且f(x)极小值=f(-)=-.
(1)求函数f(x)的解析式;
(2)求函数f(x)在[-1,m](m>-1)上的最大值;
(3)设函数g(x)=,若不等式g(x)·g(2k-x)≥(-k)2在(0,2k)上恒成立,求实数k的取值范围.
题型:不详难度:| 查看答案
(本小题满分12分)
已知函数f(x)=(x∈R),P1(x1,y1),P2(x2,y2)是函数y=f(x)图像上两点,且线段P1P2中点P的横坐标为
(1)求证P的纵坐标为定值;   (4分)
(2)若数列{}的通项公式为=f()(m∈N,n=1,2,3,…,m),求数列{}的前m项和;    (5分)
(3)若m∈N时,不等式横成立,求实数a的取值范围。(3分)
题型:不详难度:| 查看答案
已知,若的零点个数不为,则的最小值为       .
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.