试题分析:(1)设球与挡板分离时位移为s,经历的时间为t,从开始运动到分离过程中,m受到竖直向下的重力,垂直斜面向上的支持力FN,沿斜面向上的挡板支持力FN1和弹簧弹力f,根据牛顿第二定律可得方程: mgsinθ-f-FN1=ma,又因f=kx 随着x的增大,f增大,FN1减小,保持a不变,当m与挡板分离时,x增大到等于s,FN1减小到0,则有: x=at2/2,mgsinθ-kx=ma 联立解得t= (2)分离后继续做加速度减小的加速运动,v最大时,m受合力为零,即kxm=mgsinθ 位移是xm=mgsinθ/k. |