如图,在竖直平面内有一固定光滑轨道,其中AB部分是倾角为37°的直轨道,BCD部分是以O为圆心、半径为R的圆弧轨道,两轨道相切于B点,D点与O点等高,A点在D点

如图,在竖直平面内有一固定光滑轨道,其中AB部分是倾角为37°的直轨道,BCD部分是以O为圆心、半径为R的圆弧轨道,两轨道相切于B点,D点与O点等高,A点在D点

题型:不详难度:来源:
如图,在竖直平面内有一固定光滑轨道,其中AB部分是倾角为37°的直轨道,BCD部分是以O为圆心、半径为R的圆弧轨道,两轨道相切于B点,D点与O点等高,A点在D点的正下方.质量为m的小球在沿斜面向上的拉力F作用下,从A点由静止开始做变加速直线运动,到达B点时撤去外力.已知小球刚好能沿圆轨道经过最高点C,然后经过D点落回到A点.已知sin37°=0.6,cos37°=0.8,重力加速度大小为g.求
(1)小球在C点的速度的大小;
(2)小球在AB段运动过程,拉力F所做的功;
(3)小球从D点运动到A点所用的时间.
答案
(1)在C点:由牛顿第二定律得,mg=m
v2C
R

解得:vC=


gR

(2)已知θ=37°外力在AB段所做的功为W,由几何关系得:AB=
R+Rsinθ
cosθ
=2R
从B到C,根据机械能守恒定律
1
2
m
v2B
=
1
2
m
v2C
+mg(R+Rcosθ)
从A到B,根据动能定理,
W-mg2Rsinθ=
1
2
m
v2B

联立解得:W=
7
2
mg
(3)从C到D,根据机械能守恒定律,
1
2
m
v2D
=
1
2
m
v2C
+mgR
解得:vD=


3gR

从C到A,根据机械能守恒定律,
1
2
mv
2A
=
1
2
m
v2C
+mg3R
解得:vA=


7gR

从D到A做匀加速直线运动,根据运动学公式,
AD=
1
2
(vD+vA)
t
解得:t=(


7
-


3


R
g

答:
(1)小球在C点的速度的大小为


gR

(2)小球在AB段运动过程,拉力F所做的功为
7
2
mg;
(3)小球从D点运动到A点所用的时间为(


7
-


3


R
g
举一反三
如图所示,某货场需将质量为m1=100kg的货物(可视为质点)从高处运送至地面,为避免货物与地面发生撞击,现利用固定于地面的光滑四分之一圆轨道,使货物由轨道顶端无初速滑下,轨道半径R=1.8m,地面上紧靠轨道放置一木板A,长度为l=2m,质量为m2=100kg,木板上表面与轨道末端相切.货物与木板间的动摩擦因数为μ1,木板与地面间的动摩擦因数μ2=0.2(最大静摩擦力等于滑动摩擦力,取g=10m/s2)
(1)求货物到达圆轨道末端时对轨道的压力.
(2)若货物滑上木板A时,要使木板A不动,求μ1应满足的条件.
题型:不详难度:| 查看答案
如图所示,小球从弹簧正上方一定高度落到竖直放置在地面上的轻质弹簧上,直至速度为零,则从小球接触弹簧开始到压缩弹簧至最低点的过程中(  )
A.小球的动能一直减小
B.小球的机械能一直减小
C.小球的动能先增大后减小
D.小球的机械能先增大后减小

题型:不详难度:| 查看答案
如图所示,质量m=2kg的小球以初速度V0沿光滑的水平面飞出后,恰好无碰撞地进入光滑的圆弧轨道,其中圆弧AB对应的圆心角θ=530,圆半径R=0.5m.若小球离开桌面运动到A点所用时间t=0.4s.(sin53°=0.8cos53°=0.6g=10m/s2
(1)求小球沿水平面飞出的初速度V0的大小?
(2)到达B点时,求小球此时对圆弧的压力N1大小?
(3)小球是否能从最高点C飞出圆弧轨道,并说明原因.
题型:不详难度:| 查看答案
大型拱桥的拱高为h,弧长为L,如图所示,质量为m的汽车在以不变的速率v由A点运动到B点的过程中,以下说法正确的是(  )
A.由A到B的过程中,汽车的重力势能不变,重力始终不做功
B.由A到B的过程中,汽车的重力势能的增量为零,重力的总功等于零
C.汽车的重力势能先增大后减小,总的变化量为零,重力先做正功,后做负功,总功为零
D.汽车的重力势能先增大后减小,上坡时重力做负功,下坡时做正功,总功为零

题型:不详难度:| 查看答案
物体由静止开始沿固定光滑斜面下滑,其末速度的大小(  )
A.只与物体的质量有关,质量越大、速度越大
B.只与物体的质量有关,质量越大、速度越小
C.只与下滑的高度有关,高度越高、速度越大
D.只与下滑的高度有关,高度越高、速度越小
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.