A. | B. | C. | D. |
如图所示,两根间距为L的金属导轨MN和PQ,电阻不计,左端弯曲部分光滑,水平部分导轨与导体棒间的滑动摩擦因数为μ,水平导轨左端有宽度为d、方向竖直向上的匀强磁场Ⅰ,右端有另一磁场Ⅱ,其宽度也为d,但方向竖直向下,两磁场的磁感强度大小均为B0,相隔的距离也为d.有两根质量为m、电阻均为R的金属棒a和b与导轨垂直放置,b棒置于磁场Ⅱ中点C、D处.现将a棒从弯曲导轨上某一高处由静止释放并沿导轨运动下去. (1)当a棒在磁场Ⅰ中运动时,若要使b棒在导轨上保持静止,则a棒刚释放时的高度应小于某一值h0,求h0的大小; (2)若将a棒从弯曲导轨上高度为h(h<h0)处由静止释放,a棒恰好能运动到磁场Ⅱ的左边界处停止,求a棒克服安培力所做的功; (3)若将a棒仍从弯曲导轨上高度为h(h<h0)处由静止释放,为使a棒通过磁场Ⅰ时恰好无感应电流,可让磁场Ⅱ的磁感应强度随时间而变化,将a棒刚进入磁场Ⅰ的时刻记为t=0,此时磁场Ⅱ的磁感应强度为B0,试求出在a棒通过磁场Ⅰ的这段时间里,磁场Ⅱ的磁感应强度随时间变化的关系式. | |||
相距L=1.5m的足够长金属导轨竖直放置,质量为m1=1kg的金属棒ab和质量为m2=0.27kg的金属棒cd均通过棒两端的套环水平地套在金属导轨上,如图(a)所示,虚线上方磁场方向垂直纸面向里,虚线下方磁场方向竖直向下,两处磁场磁感应强度大小相同.ab棒光滑,cd棒与导轨间动摩擦因数为μ=0.75,两棒总电阻为1.8Ω,导轨电阻不计.ab棒在方向竖直向上,大小按图(b)所示规律变化的外力F作用下,从静止开始,沿导轨匀加速运动,同时cd棒也由静止释放. (1)指出在运动过程中ab棒中的电流方向和cd棒受到的安培力方向; (2)求出磁感应强度B的大小和ab棒加速度大小; (3)已知在2s内外力F做功40J,求这一过程中两金属棒产生的总焦耳热; (4)判断cd棒将做怎样的运动,求出cd棒达到最大速度所需的时间t0,并在图(c)中定性画出cd棒所受摩擦力fcd随时间变化的图象. | |||
某种超导磁悬浮列车是利用超导体的抗磁作用使列车车体向上浮起,同时通过周期性地变换磁极方向而获得推进动力.其推进原理可以简化为如图所示的模型:在水平面上相距b的两根平行直导轨间,有竖直方向等距离分布的方向相反的匀强磁场B1和B2,且B1=B2=B,每个磁场分布区间的长都是a,相间排列,所有这些磁场都以速度v向右匀速平动.这时跨在两导轨间的长为a宽为b的金属框MNQP(悬浮在导轨正上方)在磁场力作用下也将会向右运动.设金属框的总电阻为R,运动中所受到的阻力恒为f,求: (1)列车在运动过程中金属框产生的最大电流; (2)列车能达到的最大速度; (3)简述要使列车停下可采取哪些可行措施? | |||
相距为L=0.20m的足够长的金属直角导轨如图所示放置,它们各有一边在同一水平面内,另一边垂直于水平面.质量均为m=0.1kg的金属细杆ab、cd与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数均为μ=0.5,导轨电阻不计,回路总电阻为R=1.0Ω.整个装置处于磁感应强度大小为B=0.50T、方向竖直向上的匀强磁场中.当ab杆在平行于水平导轨的拉力F作用下从静止开始沿导轨匀加速运动时,cd杆也同时从静止开始沿导轨向下运动.测得拉力F与时间t的关系如图所示.g=10m/s2,求: (1)ab杆的加速度a; (2)当cd杆达到最大速度时ab杆的速度大小. | |||
如图甲所示,光滑绝缘水平面上一矩形金属线圈abcd的质量为m、电阻为R、ad边长度为L,其右侧是有左右边界的匀强磁场,磁场方向垂直纸面向外,磁感应强度大小为B,ab边长度与有界磁场区域宽度相等,在t=0时刻线圈以初速度v0进入磁场,在t=T时刻线圈刚好全部进入磁场且速度为v1,此时对线圈施加一沿运动方向的变力F,使线圈在t=2T时刻线圈全部离开该磁场区,若上述过程中线圈的v-t图象如图乙所示,整个图象关于t=T轴对称. (1)求t=0时刻线圈的电功率; (2)线圈进入磁场的过程中产生的焦耳热和穿过磁场过程中外力F所做的功分别为多少? (3)若线圈的面积为S,请运用牛顿第二运动定律和电磁学规律证明:在线圈进人磁场过程中v0-v1=
|