求一曲线的方程,这曲线通过原点,并且它在点(x,y)处的切线斜率等于2x+y
题目
求一曲线的方程,这曲线通过原点,并且它在点(x,y)处的切线斜率等于2x+y
答案
由题意,得
y'=2x+y
y(0)=0
j解y‘=2x+y
y’-y=2x
y=e^∫dx[∫2xe^(-∫dx)dx+c]
=e^x(-2xe^(-x)-2e^(-x)+c)
代入x=0,y=0,得
0=-2+c
c=2
所以
方程为
y=e^x【-2xe^(-x)-2e^(-x)+2】
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点