设函数y=x^x+ln(arctan5x),求其导数dy/dx、微分dy

设函数y=x^x+ln(arctan5x),求其导数dy/dx、微分dy

题目
设函数y=x^x+ln(arctan5x),求其导数dy/dx、微分dy
答案
y'=(x^x)'+(ln(arctan5x)'
设f(x)=x^x
lnf(x)=xlnx
1/f(x)f'(x)=lnx+1
f'(x)=f(x)(lnx+1)=x^x(lnx+1)
ln(arctan5x)'=1/(arctan5x) * (1/(1+25x^2))*5=5/[(1+25x^2)(arctan5x)]
dy/dx=x^x(lnx+1)+5/[(1+25x^2)(arctan5x)]
dy={x^x(lnx+1)+5/[(1+25x^2)(arctan5x)]}dx
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.