已知3的n次方+11的m次方可被10整除,求证3的n+4次方+11的m+2次方也能被10整除
题目
已知3的n次方+11的m次方可被10整除,求证3的n+4次方+11的m+2次方也能被10整除
help~
答案
3^(n+4)+11^(m+2)=81*3^n+121*11^m=81*3^n+81*11^m+40*11^m
=81(3^n+11^m)+10(4*11^m)
前一项有81倍的3的n次方+11的m次方一定能被10整除后一项也能被10整除.
所以3的n+4次方+11的m+2次方也能被10整除
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点