设函数【f(x)=e^(x-m)-x】其中m∈R,当m>1时判断函数f(x)在区间(0,m)内是否有零点.

设函数【f(x)=e^(x-m)-x】其中m∈R,当m>1时判断函数f(x)在区间(0,m)内是否有零点.

题目
设函数【f(x)=e^(x-m)-x】其中m∈R,当m>1时判断函数f(x)在区间(0,m)内是否有零点.
答案
对x求导,得f'(x)=[e^(x-m)] -1当m>1时,f'(0)=e^(-m) -1<0f'(m)=[e^0] -1=0也就是在区间(0,m)内f'(x)恒小于0,即f(x)在此区间递减f(0)=[e^(-m)] -0>0f(m)=[e^0] -m=1-m<0∴在(0,m)上必存在一点n使得,f(n)=0即在此...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.