若关于x的不等式x2-4x≥m对任意x∈[0,1]恒成立,则实数m的取值范围是( ) A.m≤-3或m≥0 B.-3≤m≤0 C.m≥-3 D.m≤-3
题目
若关于x的不等式x2-4x≥m对任意x∈[0,1]恒成立,则实数m的取值范围是( )
A. m≤-3或m≥0
B. -3≤m≤0
C. m≥-3
D. m≤-3
答案
原不等式转化为找f(x)=x2-4x在x∈[0,1]上的最小值,让其大于等于m,
又因为f(x)=x2-4x=(x-2)2-4,对称轴为:x=2,x∈[0,1]上是减函数,
故最小值为f(1)=12-4×1=-3,所以m≤-3.
故选D.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点