求一个小球放盒子的排列组合问题
题目
求一个小球放盒子的排列组合问题
有编号为1-361号的格子,格子是由顺序的,由1-2-3-.-361号排列.
现有小球红色,蓝色,灰色三种,要求按照规定放小球到这361个格子中.
规定
红色小球可以放179(最少)-361(最多)
蓝色小球可放0(最少)-178(最多)
灰色小球可放0(最少)-181个(最多)
问:求一共有多少种组合排列?
红球永远比蓝球多
答案
先放红色球,再放蓝色球,剩下的放灰色球.
(1)红色球放179个时,(有C上标179下标361种放法,361×360×……×183/179!)
再放蓝球灰球时,
如不考虑编号顺序,有178种放法.(蓝色球放1~178,其余放灰色球.注:蓝色球至少必须放1个,不可以放0个,否则会出现空格)
考虑编号:红球已经用去179格,剩下182格.先放蓝球,蓝球放好后,灰球只能放在剩下的格子里(灰球的放法是唯一的).
蓝球1个灰球181个,有C上标1下标182种放法.
蓝球2个灰球180个,有C上标2下标182种放法.
……
蓝球178个灰球4个,有C上标178下标182种放法.
C上标1下标182+C上标2下标182+C上标3下标182+……+C上标178下标182
=(2^182-C上标0下标182-C上标179下标182-C上标180下标182-C上标181下标182-C上标182下标182)
=(2^182-182×181×180/3!-182×181/2!-182-2)
所以,这种情况共有组合数:(2^182-182×181×180/3!-182×181/2!-182-2)×C上标179下标361
(2)红色球放180个时,
再放蓝球灰球时,
如不考虑编号,有179种放法.(蓝色球放0~178,其余灰色球.)
考虑编号,组合数=(2^181-C上标179下标181-C上标180下标181-C上标181下标181)×C上标180下标361
=(2^181-181×180/2!-181-1)×C上标180下标361
(3)红色球181个时,
不考虑编号,同上有179种放法.(蓝色球放0~178,其余灰色球.)
考虑编号,组合数=(2^180-180-1)×C上标181下标361
(4)红色球182个时,
组合数=(2^179-1)×C上标182下标361
(5)红色球183个时,
组合数=2^178×C上标183下标361
(6)红色球184个时,
组合数=2^177×C上标184下标361
(7)红色球185个时,
组合数=2^176×C上标185下标361
……
(183)红色球361个时,有1种组合.(蓝色球0个,灰色球0个)
组合数=2^0×C上标361下标361=1
以上相加,得到所有可能的组合排列方法的数目.
(排列组合的知识已经离我太久远了,不知道上面的这些式子相加是否有公式可以化简,反正俺是不会了,汗……)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点