某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A,B两种产品共50件,已知生产一件A产品需要甲原料9kg,乙原料3kg,生产一件B产品需要甲原料4kg,乙原料10kg, (1
题目
某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A,B两种产品共50件,已知生产一件A产品需要甲原料9kg,乙原料3kg,生产一件B产品需要甲原料4kg,乙原料10kg,
(1)设生产x件A种产品,写出x应满足的不等式组.
(2)有哪几种符合的生产方案?
(3)若生产一件A产品可获利700元,生产一件B产品可获利1200元,那么采用哪种生产方案可使生产A、B两种产品的总获利最大?最大利润是多少?
答案
(1)
| 9x+(50−x)×4≤360 | 3x+(50−x)×10≤290 |
| |
;
(2)解第一个不等式得:x≤32,
解第二个不等式得:x≥30,
∴30≤x≤32,
∵x为正整数,
∴x=30、31、32,
50-30=20,
50-31=19,
50-32=18,
∴符合的生产方案为①生产A产品30件,B产品20件;
②生产A产品31件,B产品19件;
③生产A产品32件,B产品18件;
(3)总获利=700×x+1200×(50-x)=-500x+60000,
∵-500<0,而30≤x≤32,
∴当x越小时,总利润最大,
即当x=30时,最大利润为:-500×30+60000=45000元.
∴生产A产品30件,B产品20件使生产A、B两种产品的总获利最大,最大利润是45000元.
(1)关系式为:A种产品需要甲种原料数量+B种产品需要甲种原料数量≤360;A种产品需要乙种原料数量+B种产品需要乙种原料数量≤290,把相关数值代入即可;
(2)解(1)得到的不等式,得到关于x的范围,根据整数解可得相应方案;
(3)总获利=700×A种产品数量+1200×B种产品数量,根据函数的增减性和(2)得到的取值可得最大利润.
一元一次不等式组的应用.
考查一元一次不等式组的应用及最大利润问题;得到两种原料的关系式及总利润的等量关系是解决本题的关键.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 已知抛物线的顶点是A(-1,2),且经过点(2,3) ,求二次函数的表达式.
- 1.已知矩形的周长为36cm,矩形绕它的一条边旋转形成一个圆柱,矩形的长.宽各为多少时,旋转形成的圆柱的侧面积最大?
- nothing 用在句子开头,
- 已知x为任意有理数,是比较多项式4x的平方-5x+2与3x的立方-5x-2的值的大小
- 0点35乘(x加8)等于3点5解
- 2010年9月8日钱塘江大潮是什么时间
- 石奢传 石奢者,楚昭王相也.坚直廉正,无所阿避
- 一只轮船在相距80千米的码头间航行,顺水需4小时,逆水需5小时,则水流速度是多少?
- “假如世界上没有了音乐”造句
- 简述质量互变规律的内容是什么求答案
热门考点