三角形ABC中,cosA=5/13,tanB/2+cotB/2=10/3,求cos(A-B)的值

三角形ABC中,cosA=5/13,tanB/2+cotB/2=10/3,求cos(A-B)的值

题目
三角形ABC中,cosA=5/13,tanB/2+cotB/2=10/3,求cos(A-B)的值
没有图的
答案
tanB/2+cotB/2=10/3
(sinB/2)/(cosB/2)+(cosB/2)/(sinB/2)=10/3
[(sinB/2)^2+(cosB/2)^2]/[(cosB/2)(sinB/2)]=10/3
1/[(sinB)/2]=10/3
sinB=3/5
因(sinB)^2+(cosB)^2=1所以cosB=4/5,
同理,sinA=12/13
cos(A-B)
=cosA*cosB+sinA*sinB
=(5/13)*(4/5)+(12/13)*(3/5)
=56/65
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.