证明圆心角是圆周角的两倍,(3种方法)
题目
证明圆心角是圆周角的两倍,(3种方法)
答案
已知在⊙O中,∠BOC与圆周角∠BAC同对弧BC,求证:∠BOC=2∠BAC.
证明:
情况1:,当圆心O在∠BAC的一边上时,即A、O、B在同一直线上时:
∵OA、OC是半径
∴OA=OC
∴∠BAC=∠ACO(等边对等角)
∵∠BOC是△OAC的外角
∴∠BOC=∠BAC+∠ACO=2∠BAC
情况2:,当圆心O在∠BAC的内部时:
连接AO,并延长AO交⊙O于D
∵OA、OB、OC是半径
∴OA=OB=OC
∴∠BAD=∠ABO,∠CAD=∠ACO(等边对等角)
∵∠BOD、∠COD分别是△AOB、△AOC的外角
∴∠BOD=∠BAD+∠ABO=2∠BAD
∠COD=∠CAD+∠ACO=2∠CAD
∴∠BOC=∠BOD+∠COD=2(∠BAD+∠CAD)=2∠BAC
情况3:,当圆心O在∠BAC的外部时:
连接AO,并延长AO交⊙O于D
∵OA、OB、OC、是半径
∴∠BAD=∠ABO(等边对等角),∠CAD=∠ACO(OA=OC)
∵∠DOB、∠DOC分别是△AOB、△AOC的外角
∴∠DOB=∠BAD+∠ABO=2∠BAD
∠DOC=∠CAD+∠ACO=2∠CAD
∵∠BAC=∠CAD-∠BAD
∠BOC=∠DOC-∠DOB=2(∠CAD-∠BAD)=2∠BAC
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 已知,三角形加三角形圆=25,圆=三角形加三角形加三角形;那么,三角形=(),圆=()
- 下列有关水的说法,正确的是()(单选)
- 一件衣服五十四元,买满一百元立减二十元,买两件多�
- 把一个分数约分,用3约了一次,用7约了一次,得四分之三,原来这个分数是多少?
- 怎样计算烟花爆竹仓库药量
- 已知直线l为4x+y-1=0,求l关于M(2,3)对称的直线l’方程.解得关于M点对称点为(4分之15,6),(4,5
- 为了得到一个关于细胞大小的印象,请尝试如下练习:人脑约重1.5kg,大约有10^12个细胞.假定每个细胞完全充满水,是计算一个脑细胞的平均大小.如果脑细胞是简单的立方体,那么这个平均大小的脑细胞每边长
- 已知A与远点距离为1个单位,点B与点A距离两个单位,求满足条件的所有点B原点的距离之和.
- 我们要努里为改善环境作些有益的事情.
- 怎么把这个英语句子改写成否定句?