请问函数f(x)=sinx/(sinx+2sinx/2)的周期是多少?
题目
请问函数f(x)=sinx/(sinx+2sinx/2)的周期是多少?
最小正周期?
答案
4π
由f(x)=sinx/(sinx+2sinx/2),又sinx=2sin(x/2)*cos(x/2)得
f(x)
=[2sin(x/2)*cos(x/2)]/[2sin(x/2)*cos(x/2)+2sin(x/2)]
=cos(x/2)/[cos(x/2)+1]
所以 1/f(x)=1+1/cos(x/2)
即 [1/f(x)]-1=1/cos(x/2)
因为函数y=1/cos(x/2)的周期为4π.所以
[1/f(x+4π)]-1=[1/f(x)]-1 故原函数的周期为4π.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点