数列an的前n项和为Sn,已知a1=1,an+1=(n+2)/nSn.求证:(1)数列{Sn/n}是等比数列(2)Sn+1=4an

数列an的前n项和为Sn,已知a1=1,an+1=(n+2)/nSn.求证:(1)数列{Sn/n}是等比数列(2)Sn+1=4an

题目
数列an的前n项和为Sn,已知a1=1,an+1=(n+2)/nSn.求证:(1)数列{Sn/n}是等比数列(2)Sn+1=4an
答案
(1)an+1=(n+2)/nSn,即S(n+1)-Sn=(n+2)/nSn,化简可得S(n+1)/(n+1)=2(Sn/n),即证得数列{Sn/n}是等比数列;
(2)由(1)可知Sn=n*2^(n-1),可求出an=(n+1)*2^(n-2),即可证得S(n+1)=4an.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.