证明题:设向量组a1,a2,a3,线性无关,证明向量组a1+2a2,a2+2a3,a3+2a1线性无关

证明题:设向量组a1,a2,a3,线性无关,证明向量组a1+2a2,a2+2a3,a3+2a1线性无关

题目
证明题:设向量组a1,a2,a3,线性无关,证明向量组a1+2a2,a2+2a3,a3+2a1线性无关
答案
设k1,k2,k3使得k1(a1+2a2)+k2( a2+2a3)+k3(a3+2a1)=0(k1+2k3)a1+(2k1+k2)a2+(2k2+k3)a3=0a1,a2,a3线性无关所以 k1+ 2k3=02k1+k2=02k2+k3=0解得:k1=k2=k3=0所以向量组a1+2a2,a2+2a3,a3+2a1线性无关...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.