求和Sn=2²/1·3+4²/3·5+...+(2n)²/(2n-1)(2n+1)

求和Sn=2²/1·3+4²/3·5+...+(2n)²/(2n-1)(2n+1)

题目
求和Sn=2²/1·3+4²/3·5+...+(2n)²/(2n-1)(2n+1)
答案
令an=(2n)²/(2n-1)(2n+1)
=1/[1-(1/2n)][1+(1/2n)]
=(1/2)*{[1-(1/2n)]+[1+(1/2n)]}/[1-(1/2n)][1+(1/2n)]
=(1/2)*{1/[1+(1/2n)] + 1/[1-(1/2n)]}
=(1/2)*[2n/(2n+1) + 2n/(2n-1)]
=(1/2)*{1-[1/(2n+1)]+1+[1/(2n-1)]}
=1 + (1/2)*[1/(2n-1) - 1/(2n+1)]
Sn
=a1+a2+...+an
=1*n + (1/2)*[(1/1-1/3)+(1/3 - 1/5)+(1/5 - 1/7)+.+1/(2n-1) - 1/(2n+1)]
=n + (1/2)*[1 - 1/(2n+1) ]
=n{1+[1/(2n+1)]}
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.