设函数y=f(x)由方程sin(x^2+y)=xy 确定,求dydx
题目
设函数y=f(x)由方程sin(x^2+y)=xy 确定,求dydx
答案
这个题目要利用隐函数的求导法则.
则sin(x^2+y)=xy (两边同时求导,还要结合复合函数的求导法则)
cos(x^2+ y)*(2x+y′)=y+xy′
2xcos(x^2+y)-y=xy′-y′ cos(x^2+ y)
2xcos(x^2+y)-y=y′(x-cos(x^2+ y))
y′={2xcos(x^2+y)-y}/(x-cos(x^2+ y))
则dydx= y′={2xcos(x^2+y)-y}/(x-cos(x^2+ y))
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点