已知t为常数,函数f(x)=|x^3-3x-t+1|在区间【-2,1】上的最大值为2,则实数t=

已知t为常数,函数f(x)=|x^3-3x-t+1|在区间【-2,1】上的最大值为2,则实数t=

题目
已知t为常数,函数f(x)=|x^3-3x-t+1|在区间【-2,1】上的最大值为2,则实数t=
答案
观察函数g(x)=x^3-3x
g'(x)=3x^2-3,表明g(x)在[-2,-1]递增,在[-1,1]递减
g(-2)=-2,g(1)=-2,最大值g(-1)=2
容易画出g(x)图像,是个奇函数
h(x)=x^3-3x-t+1就是g(x)上下平移的结果
f(x)就是h(x)负的部分翻到x轴上面
考察h(x)
1.h(0)>=0,则h(x)最大值的绝对值大于h(x)最小值的绝对值
因此h(0)=-t+1>=0,f(x)最大值在x=-1处取得,与h(x)最大值相等
h(-1)=-t+3=2,t=1
2.h(0)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.