是否存在实数a,使函数f(x)=x2-2ax+a的定义域为[-1,1]时,值域为[-2,2]?若存在,求a的值;若不存在,说明理由.

是否存在实数a,使函数f(x)=x2-2ax+a的定义域为[-1,1]时,值域为[-2,2]?若存在,求a的值;若不存在,说明理由.

题目
是否存在实数a,使函数f(x)=x2-2ax+a的定义域为[-1,1]时,值域为[-2,2]?若存在,求a的值;若不存在,说明理由.
答案
由于函数f(x)=x2-2ax+a的对称轴为 x=a,
当a<-1 时,函数f(x)=x2-2ax+a在定义域[-1,1]上是增函数,故有
1+2a+a=-2
1-2a+a=2

解得 a=-1 (舍去).
当 0>a≥-1 时,函数f(x)=x2-2ax+a在定义域[-1,1]上先减后增,故有
f(a)=-a2+a =-2
f(1)=1-2a+a=2

解得a=-1.
当 1>a≥0 时,函数f(x)=x2-2ax+a在定义域[-1,1]上先减后增,故有
f(a)=-a2+a =-2
f(-1)=1+2a+a=2

解得a 无解.
当a≥1 时,函数f(x)=x2-2ax+a在定义域[-1,1]上是减函数,
f(-1) =1+3a =2
f(1)=1-a=-2
,解得 a 无解.
综上可得,a=-1.
由于函数f(x)=x2-2ax+a的对称轴为 x=a,分a<-1、0>a≥-1、1>a≥0、a≥1 四种情况利用函数的单调性以及定义域、值域求出a的值.

二次函数在闭区间上的最值.

本题考查的知识点是二次函数的性质,函数的最值及其几何意义,其中熟练掌握二次函数的图象和性质,以及二次函数各系数的作用是解答本题的关键,体现了分类讨论的数学思想,属于中档题.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.