用数学归纳法证明:1+3+5+…+(2n-1)=n2.

用数学归纳法证明:1+3+5+…+(2n-1)=n2.

题目
用数学归纳法证明:1+3+5+…+(2n-1)=n2
答案
证明:(1)当n=1时,左边=1,右边=1,
∴左边=右边
(2)假设n=k时等式成立,即1+3+5+…+(2k-1)=k2
当n=k+1时,等式左边=1+3+5+…+(2k-1)+(2k+1)=k2+(2k+1)=(k+1)2
综上(1)(2)可知1+3+5+…+(2n-1)=n2对于任意的正整数成立.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.