如图,在三棱锥V-ABC中,底面△ABC为正三角形,VA=VB=VC=AB,VO⊥底面ABC于O,
题目
如图,在三棱锥V-ABC中,底面△ABC为正三角形,VA=VB=VC=AB,VO⊥底面ABC于O,
M是VO的中点,连接MA,MB,MC
求证:MA⊥平面MBC
答案
第一问:
连接OC
则OC=√3BC/3=√3VC/3
所以VO=√6BC/3,OM=√6BC/6
MC=√(OC^2+OM^2)=√2BC/2
同理MB=MC=√2BC/2
所以MB^2+MC^2=BC^2
所以MB⊥MC
同理MA⊥MC,MA⊥MB
所以MA⊥平面MBC
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点