设两个随机变量X,Y相互独立,且都服从均值为0,方差为1/2的正态分布,求随机变量|X-Y|的方差.

设两个随机变量X,Y相互独立,且都服从均值为0,方差为1/2的正态分布,求随机变量|X-Y|的方差.

题目
设两个随机变量X,Y相互独立,且都服从均值为0,方差为1/2的正态分布,求随机变量|X-Y|的方差.
后面的计算请详细解答,主要就是后面的计算不会做.
答案
分析:
这个直接求,有直接定理
E(X)=E(Y)=u=0
Z=X-Y
E(|Z|)=(2/√2π)∫ze^(-z^2/2)dz=√(2/π)
D(X)=D(Y)=1/2
D(|X-Y|)=E(|X-Y|^2)-[E(|X-Y|)]^2
=E(X^2)-[E(X)]^2+E(Y^2)-[E(Y)]^2-2E(XY)-[E(|X-Y|)]^2
=D(X)+D(Y)-2E(X)E(Y)-[E(|X-Y|)]^2
=1-2/π
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.