椭圆 X^2/a^2+Y^2/b^2上的一点,A为左顶点,B为短轴的一个端点,F为右焦点,且AB垂直BF,则这个椭圆的离心率为

椭圆 X^2/a^2+Y^2/b^2上的一点,A为左顶点,B为短轴的一个端点,F为右焦点,且AB垂直BF,则这个椭圆的离心率为

题目
椭圆 X^2/a^2+Y^2/b^2上的一点,A为左顶点,B为短轴的一个端点,F为右焦点,且AB垂直BF,则这个椭圆的离心率为
答案
∵∠AOF=∠AOB=90(O为原点)
∠BAF=∠OBF
∴三角形AOB∽三角形BOF
∴OB/OA=BF/OB
所以b/a=c/b
∴b^2=ac
所以a^2-c^2=ac
∴(c/a)^2+c/a-1=0
所以离心率e=c/a=((根号5)-1)/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.