函数f(x)=3x-x3在区间(a2-12,a)上有最小值,则实数a的取值范围是_.

函数f(x)=3x-x3在区间(a2-12,a)上有最小值,则实数a的取值范围是_.

题目
函数f(x)=3x-x3在区间(a2-12,a)上有最小值,则实数a的取值范围是______.
答案
由f(x)=3x-x3,得f'(x)=3-3x2,令f'(x)>0,解得-1<x<1;令f'(x)<0解得x<-1或x>1由此得函数在(-∞,-1)上是减函数,在(-1,1)上是增函数,在(1,+∞)上是减函数故函数在x=-1处取到极小值-2,因为...
求函数f(x)=3x-x3导数,由于函数在区间(a2-12,a)上有最小值,故最小值点的横坐标是集合(a2-12,a)的元素,由此可以得到关于参数a的等式,解之求得实数a的取值范围.

利用导数求闭区间上函数的最值.

本题考查用导数研究函数的最值,利用导数研究函数的最值是导数作为数学中工具的一个重要运用,要注意把握其作题步骤,求导,确定单调性,得出最值,是中档题.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.