多元函数连续、可偏导,但是不可微的几何意义是什么啊?

多元函数连续、可偏导,但是不可微的几何意义是什么啊?

题目
多元函数连续、可偏导,但是不可微的几何意义是什么啊?
连续就是图像不间断,
可偏导就是在一个方向上平滑,
那可微的几何意义是什么呢?
答案
回顾一元函数中可微的定义,如果一元函数y=f(x)可微,则dy=f'(x)dx,把dy和dx分别理解为y和x在x0处的微小增量,即dy=y-y0,dx=x-x0,则可微表达式就变为y-y0=f'(x0)(x-x0),这就是f(x)图像在x0处的切线方程,而可微就意味着切线方程存在.对比二元函数,z=f(x,y)的全微分表达式dz=z'x*dx+z'y*dy,按照上述方法理解,其实就是二元函数在(x0,y0)处的切平面方程,所以如果二元函数在某点不可微,就意味着函数图像在该点不存在切平面.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.