设函数f(x)=(ax+b)/(x^2+1)的值域为【-1,4】,求a,b的值.

设函数f(x)=(ax+b)/(x^2+1)的值域为【-1,4】,求a,b的值.

题目
设函数f(x)=(ax+b)/(x^2+1)的值域为【-1,4】,求a,b的值.
答案
y=(ax+b)/(x^2+1)
x^2y-ax+(y-b)=0
这个关于x的方程有实数解则判别式大于等于0
所以a^2-4y(y-b)>=0
4y^2-4by-a^2<=0
值域[-1,4]
即不等式的解集是-1<=y<=4
则-1和4 是对应的方程4y^2-4by-a^2=0的根
所以-1+4=4b/4,-1*4=-a^2/4
b=3,a^2=16
所以a=4,b=3或a=-4,b=3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.