用数学归纳法证明:(1)4^(2n+1)+3^(n+2)能被13整除(2)2^(n+2)·3^n+5n+21能被25整除

用数学归纳法证明:(1)4^(2n+1)+3^(n+2)能被13整除(2)2^(n+2)·3^n+5n+21能被25整除

题目
用数学归纳法证明:(1)4^(2n+1)+3^(n+2)能被13整除(2)2^(n+2)·3^n+5n+21能被25整除
答案
证明:
(1)N=1:
4^(2+1)+3^(1+2)=64+27=91=7*13
显然能够被13整除.
(2)假设N=K时,原式能够被13整除.
那么当N=K+1时有:
4^[2(k+1)+1]+3^(k+1+2)=4^(2k+3)+3^(k+3)=4^(2k+1)*16+3^(k+2)*3=4^(2k+1)*(13+3)+3^(k+2)*3
=13*4^(2k+1)+3*4^(2k+1)+3*3^(k+2)
=13*4^(2k+1)+3*[4^(2k+1)+3^(k+2)]
因为:4^(2k+1)+3^(k+2)能够被13整除,
所以,上式也能够被13整除.
综上所述,4的(2n+1)次方+3的(n+2)次方能被13整除
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.